News Manufacturers
EVE Lithium LFP Cells List 3.2v

A list of cells manufactured by EVE in July 2024.
It details the capacity, energy density, estimated cycle life, weight, and Internal resistance of each cell.

Using this information you might be able to decide what cells suit your application best.
For example the LF50k cell is rated for 7000 cycles at 1C charge and discharge. But its energy density is very low. The main reason it gets such a good rating is because it can be actively cooled or heated in the right application, which can help tremendously with lifespan.
However you will also note that cycle life is now mostly spoken about at 0.5C or P. Meaning much of the information previously released has been further corrected over time.
All of these numbers are best case scenario, and usually at 25 degrees Celsius. So these numbers are basically unattainable in most cases.

ModelCapacity (Ah)Voltage (V)Cycle(time) 25°CInternal Resistance (1KHz)Weight (g)Length × Width × Height (mm)Energy Density (Wh/kg)
LF22K223.224500 (3C/3C)≤0.4mΩ628±10148.7×17.7×131.8112
LF32323.203500 (1C/1C)≤1.5mΩ730±50148.3×26.8×94.3140
LF50F503.201500 (0.5C/0.5C)≤2.0mΩ1035±100148.3×26.7×129.8154
LF50L503.205000 (0.5C/0.5C)≤0.6mΩ1090±50148.6×39.7×100.2154
LF50K503.207000 (1C/1C)≤0.7mΩ1395±50135.3×29.3×185.3114
LF80823.204000 (0.5C/0.5C)≤0.5mΩ1680±50130.3×36.3×170.5156
LF90K903.206000 (1C/1C)≤0.5mΩ1994±100130.3×36.3×200.5144
LF100MA1013.202000 (0.5C/0.5C)≤0.5mΩ1920±100160.0×50.1×118.5168
LF100LA1023.205000 (0.5C/0.5C)≤0.5mΩ1985±100160.0×50.1×118.5164
LF1051053.204000 (0.5C/0.5C)≤0.32mΩ1980±60130.3×36.3×200.5169
LF1251253.224000 (0.5C/0.5C)≤0.40mΩ2390±71200.7×33.2×172.0168
LF1501503.224000 (0.5C/0.5C)≤0.4mΩ2830±84200.7×33.2×207.0170
LF1601603.224000 (0.5C/0.5C)≤0.21mΩ3000±100173.9×53.8×153.5171
LF1731733.224000 (0.5C/0.5C)≤0.25mΩ3190±96173.9×41.06×207.5174
LF2302303.204000 (0.5C/0.5C)≤0.25mΩ4140±124173.9×53.8×207.2177
LF280K2803.208000 (0.5C/0.5P)≤0.25mΩ5490±300173.7×71.7×207.2163
LF3043043.204000 (0.5C/0.5C)≤0.16mΩ5450±164173.7×71.7×207.2178
LF560K5603.208000 (0.5P/0.5P)≤0.25mΩ10700±300352.3×71.7×207.2167
MB303063.2010000 (0.5P/0.5P)≤0.18mΩ5600±300173.7×71.7×207.2174
MB313143.208000 (0.5P/0.5P)≤0.18mΩ5600±300173.7×71.7×207.2179
V211543.222000 (0.5C/0.5C)≤0.5mΩ2755±30110.0×35.7×346.4182
A22178.13.222000 (0.33C/0.33C)≤0.3mΩ3170±230280.7×31.0×88.6180
A24172.13.222000 (0.33C/0.33C)≤0.45mΩ3160±240301.0×36.7×132.5175
A31-V1132.53.222000 (0.33C/0.33C)≤0.45mΩ2370±230194.3×50.7×112.7180
A31-V21413.222000 (Fch/1C)≤0.45mΩ2450±230194.3×50.7×112.7185
A27127.23.212000 (Fch/1C)≤0.45mΩ2220±33088.0×37.2×309.5183
A2887.53.222500 (0.33C/0.33C)≤0.57mΩ1645±30301.8×26.7×94.9171
News Lithium Battery-school
Comparing the most popular 300AH Lifepo4 cells

Comparing the EVE LF304 to the LF280, LF280K, and LF280k v3, MB30, MB31 we can analyze the key differences and similarities among these popular Lifepo4 cells.

You can also find out why the next generation of MB (Mr Big) cells is better than the last, mostly due to the new stacking technique being employed by just a small number of LFP manufacturers. At this stage CATL, EVE have next generation cells, not yet freely available. But in the near future, you will be able to purchase these cells if you don’t buy them from the grey markets.

EVE LF304

EVE 304ah 300Ah 310Ah 320Ah
LF304 EVE

The EVE LF304 has a cycle life of 4000 at 0.5C/0.5C. Giving it an estimated lifespan of up to 11 years.
The EVE LF304 is EVE’s high power cell, with thicker coatings,

Capacity: 304Ah
Nominal Voltage: 3.2V

Production technology – Winding

LF280

LF280

The EVE LF280 has a cycle life of 4000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 11 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Maximum Continuous Discharge 1C
Production technology – Winding

LF280K

eve lf280k 2
EVE LF280K

The EVE LF280K has a cycle life of 6000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 16 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Cycle Life @ 0.5C : 6000 Cycles
Production technology – Winding

LF280k v3

The EVE LF280K has a cycle life of 6000 cycles (A+ Grade 8000 Cycles) at 0.5C/0.5C. Giving it an estimated lifespan of up to 16 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Cycle Life: 6000 Cycles (A+ Grade 8000 Cycles)
Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

MB30

The EVE MB30 has a cycle life of 10000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 20-25 years
Capacity: 306Ah
Expected Real measured capacity when new 320+AH
Nominal Voltage: 3.2V

Cycle Life: 10000 Cycles
Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

MB31

The EVE MB31 has a cycle life of 8000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 20-25 years
Capacity: 314Ah
Expected Real measured capacity when new 330+AH
Nominal Voltage: 3.2V
Advertised Cycle Life: 8000 Cycles

Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

Stacking vs Winding

Longer life span
The stacked battery cell has more tabs, the shorter the electron transmission distance, and the smaller the resistance, so the internal resistance of the stacked battery cell can be reduced, and the heat generated by the battery cell is small. The winding is prone to deformation, expansion and other problems, which affect the attenuation performance of the battery.

Comparing process of stacking battery vs winding

StackingWinding
Energy densityHigher. Higher space utilization.Lower. There is a C angle, and the larger the capacity, the lower the utilization rate.
Structural stabilityHigher. The internal structure is uniform and the reaction rate is relatively low.Lower. There is a C angle, which leads to uneven rate of internal reaction of charging and discharging.
Fast charging adaptationBetter. The multi-pole plates are connected in parallel, the internal resistance is low, and the charge and discharge of large current can be completed in a short time, and the rate performance of the battery is high.Poor. During the charge and discharge process, the degradation rate of the active material at the high temperature position is accelerated, and the other positions are rapidly attenuated.
SafetyThe risk is low. Stress distribution is more consistent, which keeps the interface flat and more stable.Lower. Potential problems such as powder shedding, burrs, pole piece expansion, and separator stretching are easy to occur at the bend.
Cycle lifeLonger. Low internal resistance, relieve battery heating during fast charging, improve battery chemical system stability and prolong service life.Shorter. It is easy to deform in the later stage, which in turn affects the cycle life of the battery.
ProductivityLarge-capacity batteries are generally low, mainly 6-8PPM.Higher, generally at 12-13PPM.
YieldLow, the glitch problem is prominent.Higher automation, higher yield rate, higher number of pole pieces.
Process maturityLow, the number of pole pieces is large, and the investment in equipment is large.Higher, fewer pole pieces, mature equipment and low investment cost.

Summary of new technology

Technologies such as low-expansion anode materials, full tab design, electrode surface treatment, and flexible electrode forming help resolve liquid infiltration challenges for large cells, enabling comprehensive safety protection and high cycle life through heat insulation, diffusion prevention, pressure relief

What to choose for a battery with the longest lifespan.

EVE MB30 Automotive A+ verified cells directly supplied from EVE, not via a third party, not via Alibaba, and not from most resellers and battery pack manufacturers including almost all battery builders in Australia and China, unless they can provide you with a) the official eve delivery report for the cell purchase, and b) evidence that the QR code is genuine and not re-lasered.
The B grade to A grade problem is going to be larger with the new models the LF280K v3 which is actually the MB30

A genuine QR code should be shiny behind the data that has been printed.

CleanQR wpp1710016061418
QR EVE LF304
Blog Lithium Battery-school Manufacturers
Hithium 280ah 300ah and 320ah cell Lifepo4 Review

Wondering about Hithium Lifepo4 cells quality?

Hithium 280Ah cells are a type of lithium iron phosphate (LiFePO4) battery cells. They are known for their high energy density, long cycle life, and safety features123.

Information about the cell. The cell is identical to the current reference design of a prismatic Lifepo4 cell with the dimensions of 207mm x 173mm x 71mm. These are identical in every way to the cells made by CATL, EVE, CALB, GOTION, BYD, GREAT POWER, REPT, SUNWODA and the list goes on. All of these currently manufacturer this exact same cell, with the exact same dimensions. They all use the same ingredients, with very minute differences to the cathode and anode and electrolyte mixture.

202303301648005656
290AH
Hithium 280AH
  • Product certifications:
    IEC 62619, UL 1973, UL 9540A, UN 38.3
  • Company certifications:
    ISO 9001, ISO 14001, ISO 45001
  • Environmental Compliance: ROHS, REACH

High safety

  • Hithium-developed prismatic LFP cell with high thermal stability
  • Passes crush and nail penetration test
  • Ultra wide operating temperature range


Overall this cell is modified to last longer. Although the truth is the cycle count can be manipulated such as 6000 cycles at 80% is the same as 9000 cycles at 70% and so on. So the claim of 10000 cycles is probably true. Especially considering they are made with the intention of Energy storage, so with a Hithium cell you know you are getting something that will last a very long time.

3.2V 280Ah LiFePO4 Battery Prismatic Cell With 10000cycles (evlithium.com)

News Blog
Hithium 280ah 12000 cycle LFP cells used in 400MWh The largest standalone battery storage project in China

The 200MW/400MWh battery energy storage system (BESS) is live in Ningxia, China, equipped with Hithium lithium iron phosphate (LFP) cells.

Established 3 years ago in 2019 is already ramping up to a target of more than 135GWh of annual battery cell production capacity by 2025 for a total investment value of about US$4.71 billion.

The project was connected to the grid earlier this month, through a system integrator called ROBESTEC, about which little information appears publicly available. However, it is understood that although Hithium makes and provides complete BESS solutions as well as cells, in this case, it was the cell supplier.

200MW/400MWh HITHIUM LFP BESS in China

China 400MWh Hithium 12000 cycle LFP Battery 1

The facility stores energy at times of abundant generation from solar PV and wind, putting it into the grid during times of peak demand. It will also help regulate grid frequency.

If you are interested in these new 280AH cells, which Hithium and CATL currently can produce specifically for ESS use, let us know, as we have access to the cells when the demand is slightly lower. As these are actually in high demand for commercial applications, and they technically are hard to get for the DIY community.

it’s expected this giant LFP battery will cut CO2 emissions by 501,000 tons per year

Hithium specializes in the R&D, production, and sales of LFP energy storage batteries and systems. With strong customer orientation, they are committed to providing safe, efficient, clean, and sustainable energy storage solutions for the world. Hithium now has over 4400 employees globally including over 1000 R&D engineers with extensive experience in energy storage. With a planned 4.71 billion USD total investment and 1,400,000m2 factory space to achieve 135GWh production capacity of the energy storage battery in 2025.

Xiamen Haichen New Energy Lithium Battery
Hithium-280ah-LFP280 12000 Cycles Storage Grade
280ah capacity test
Hithium_280ah_test_results

We delivered these cells in 2022 to a few customers and currently have a small shipment arriving again in February 2023. As they are an unknown brand to many customers, we haven’t ordered large quantities, because many customers still want EVE, CATL, LiShen, CALB, and various other brands they have heard of. It’s just not a well-known brand,

In the past was a bad thing, But with this type of new technology, sometimes it’s a great thing to get in early while you can.

X