fbpx
News Lithium Battery-school
Comparing the most popular 300AH Lifepo4 cells

Comparing the EVE LF304 to the LF280, LF280K, and LF280k v3, MB30, MB31 we can analyze the key differences and similarities among these popular Lifepo4 cells.

You can also find out why the next generation of MB (Mr Big) cells is better than the last, mostly due to the new stacking technique being employed by just a small number of LFP manufacturers. At this stage CATL, EVE have next generation cells, not yet freely available. But in the near future, you will be able to purchase these cells if you don’t buy them from the grey markets.

EVE LF304

EVE 304ah 300Ah 310Ah 320Ah
LF304 EVE

The EVE LF304 has a cycle life of 4000 at 0.5C/0.5C. Giving it an estimated lifespan of up to 11 years.
The EVE LF304 is EVE’s high power cell, with thicker coatings,

Capacity: 304Ah
Nominal Voltage: 3.2V

Production technology – Winding

LF280

LF280

The EVE LF280 has a cycle life of 4000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 11 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Maximum Continuous Discharge 1C
Production technology – Winding

LF280K

eve lf280k 2
EVE LF280K

The EVE LF280K has a cycle life of 6000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 16 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Cycle Life @ 0.5C : 6000 Cycles
Production technology – Winding

LF280k v3

The EVE LF280K has a cycle life of 6000 cycles (A+ Grade 8000 Cycles) at 0.5C/0.5C. Giving it an estimated lifespan of up to 16 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Cycle Life: 6000 Cycles (A+ Grade 8000 Cycles)
Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

MB30

The EVE MB30 has a cycle life of 10000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 20-25 years
Capacity: 306Ah
Expected Real measured capacity when new 320+AH
Nominal Voltage: 3.2V

Cycle Life: 10000 Cycles
Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

MB31

The EVE MB31 has a cycle life of 8000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 20-25 years
Capacity: 314Ah
Expected Real measured capacity when new 330+AH
Nominal Voltage: 3.2V
Advertised Cycle Life: 8000 Cycles

Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

Stacking vs Winding

Longer life span
The stacked battery cell has more tabs, the shorter the electron transmission distance, and the smaller the resistance, so the internal resistance of the stacked battery cell can be reduced, and the heat generated by the battery cell is small. The winding is prone to deformation, expansion and other problems, which affect the attenuation performance of the battery.

Comparing process of stacking battery vs winding

Stacking
Winding
Energy density
Higher. Higher space utilization.
Lower. There is a C angle, and the larger the capacity, the lower the utilization rate.
Structural stability
Higher. The internal structure is uniform and the reaction rate is relatively low.
Lower. There is a C angle, which leads to uneven rate of internal reaction of charging and discharging.
Fast charging adaptation
Better. The multi-pole plates are connected in parallel, the internal resistance is low, and the charge and discharge of large current can be completed in a short time, and the rate performance of the battery is high.
Poor. During the charge and discharge process, the degradation rate of the active material at the high temperature position is accelerated, and the other positions are rapidly attenuated.
Safety
The risk is low. Stress distribution is more consistent, which keeps the interface flat and more stable.
Lower. Potential problems such as powder shedding, burrs, pole piece expansion, and separator stretching are easy to occur at the bend.
Cycle life
Longer. Low internal resistance, relieve battery heating during fast charging, improve battery chemical system stability and prolong service life.
Shorter. It is easy to deform in the later stage, which in turn affects the cycle life of the battery.
Productivity
Large-capacity batteries are generally low, mainly 6-8PPM.
Higher, generally at 12-13PPM.
Yield
Low, the glitch problem is prominent.
Higher automation, higher yield rate, higher number of pole pieces.
Process maturity
Low, the number of pole pieces is large, and the investment in equipment is large.
Higher, fewer pole pieces, mature equipment and low investment cost.

Summary of new technology

Technologies such as low-expansion anode materials, full tab design, electrode surface treatment, and flexible electrode forming help resolve liquid infiltration challenges for large cells, enabling comprehensive safety protection and high cycle life through heat insulation, diffusion prevention, pressure relief

What to choose for a battery with the longest lifespan.

EVE MB30 Automotive A+ verified cells directly supplied from EVE, not via a third party, not via Alibaba, and not from most resellers and battery pack manufacturers including almost all battery builders in Australia and China, unless they can provide you with a) the official eve delivery report for the cell purchase, and b) evidence that the QR code is genuine and not re-lasered.
The B grade to A grade problem is going to be larger with the new models the LF280K v3 which is actually the MB30

A genuine QR code should be shiny behind the data that has been printed.

CleanQR wpp1710016061418
QR EVE LF304
News
CATL EnerOne

We can supply a range of CATL EnerOne storage systems. Are you looking for a commercial grade energy storage solution?

Contact us for pricing and availability, Generally a lead time of about 90-120 days is required for CATL to be able to supply these kinds of systems.

Having modular nominal capacity of 232.96Kw, 372.7 kWh and 407.34kWh depending on the cell chosen, 280, 285 and 306ah with a floor space of just 1.69 square meters. The system is suitable for inverters with operating voltages ranging from 600 to 1500 volts. EnerOne can be efficiently shipped as a complete product, which greatly reduces on-site installation costs and commissioning time.  

EnerOne can be used flexibly in outdoor applications, thanks to the protection level IP 66 of the main components and the adaptability to ambient temperature range of -30 to +55 ℃. It has passed various critical tests on the cell, module and rack level. EnerOne has obtained UL9540A test report, and in this test there’s no fire and no extra thermal propagation without the help from fire suppression system.

EnerOne CATL 372.7

High level of safety

  • LFP batteries with high thermal stability
  • Protection level of IP66 to meet the requirements of outdoor applications
  • Resistance up to C5 corrosion level, with 20-year reliability
  • Separate fire protection system

Long service life

  • Available for integration with CATL’s advanced technologies (e.g. optional cell with super-long cycling up to 12,000 cycles)
  • Integrated frequency conversion liquid-cooling system, with cell temperature difference limited to 3ºC, and a 33% increase of life expectancy

High integration

  • Modular design, compatible with 600 – 1,500V system
  • Separate water cooling system for worry-free cooling
  • Modular design with a high energy density, saving the floor space by 50%
  • Transportation after assembly, reducing on-site installation costs and commissioning time

The EnerOne+Rackconsists of following parts: batteries, BMS, FSS and TMS, which are integrated together to keep the normal working of the Rack.

Battery

The capacity of cellis 306Ah,1P52S cells integrated in one module,8 modules integrated into one Rack.As the core of the energy storage system, the battery releases and stores energy.

BMS

BMSadopts the distributed scheme, through the three-level (CSC–SBMU–MBMU)architecture to control the BESS,andensure the stable operation of the energy storage system.It canmanageenergy absorption and release, the thermal management system andauxiliarypower supplyaccording to the detectedinformation:battery voltage, currentandtemperature.It canmonitorhigh voltage DC/AC security, diagnosis and analysis faultsaccording informationfrom various detectors and dry-contacts.Andit cankeep communicationwith PCS and EMSthrough CAN.

FSS

FSS consists of smoke detectorand heatdetector(Orheatdetector and gasdetector), the aerosol, the dry pipe(optional).FSSundertakesfunctions :monitorthe thermalrun-awayrisks ofRackthroughthedetectors, extinguishthe thermal run awayin an early stage, andcontrol the loss to minimum. The FSS is independent with any other systemandit is the security guard of EnerOne+Rack.

TMS

TMS consists of one powerful chiller, one PTC heaterandthe liquid cooling pipe distributed in each battery module. The TMS will keep the battery work at best state and reach longest life.

Controlbox

Control box mainly includes detection device, protection device and AC/DC power supply. The structure is shown as follows.

DC Side Data
Product ModelR08306P05L31
P-Rate0.5P
Cell
Cell typeLFP
Cell capacity306Ah
Cell Voltage range2.5-3.65V
Cell rated Energy979.2Wh
System
Configuration1P416S
Rated Energy407.34 kWh
Rated Voltage1331.2 VDC
Voltage Range1040~1500 VDC
Rated Charging Current153A
Maximum Charging Current195.8A,<1min
Rated Charging Power203.67kW
Rated Discharging Current153A
Maximum Discharging Current195.8A,<1min
Rated Discharging Power203.67kW
AuxiliaryPower&Communication
Product ModelR08306P05L31
P-Rate0.5P
Auxiliary Power1 for BMSVoltageL+N+PE/220V/110V±10%,
Range50/60HZ
PowerMax.135W
Rated Current2.3A
 Inrush≤6A,<1S
Current
Auxiliary Power2 for coolingunitVoltageL+N+PE/220V±20%,50/60HZ
Range
PowerMax.3kW(Continuous)
Rated Current10A
Inrush≤12.5A,<1ms
Current
Auxiliary Power3 for Fire FSSVoltage24VDC
Range
Power0.003W(Standby state)
27.3W(Alarm status)
Current0.125mA(Standby state)
1.1375A(Alarm status)
Communication ProtocolCAN, Modbus/TCP
MechanicalData
Product ModelR08306P05L31
TransportationLand or sea transportation
Size2348mm(H)*1390mm(W)*1344.1mm(D)
Weight3600±100kg
ColorRAL7035
IP LevelIP56(Battery Room)
IP23(Electrical Room)
IP66(Control Box)
IP66(Battery Modules)
IP26(Chiller Unit)
Environmentcondition
Charge Temperature Range-25ºC…+55ºC
Discharge Temperature Range-25ºC…+55ºC
Storage Temperature Range-30ºC…+60ºC
Application Altitude≤4000m
Relative Humidity0~95%(non-condensing)
Degree of Anti-corrosion of Battery UnitC5
Seismic LevelIEEE693-2018 Moderate design level
News Blog Home
New LiFePo4 Prismatic Cells sizes 306ah 314ah 320ah and more in 2024

Breaking this is likely the most important news to hit the DIY Solar and Lithium Lifepo4 Battery Off Grid community in 10 years. This really is going to upset the YouTube community apple cart. Especially that guy that lives in Australia who isn’t even Australian.

Currently, 280Ah and 300ah cells are the mainstream in Lifepo4 Batteries, but with the acceleration of technological iteration, the improvement to battery cathode and electrolyte technology in the past few years, over 20 types of high-capacity cells above 300Ah have emerged, these cells will take considerable time to enter the retail and B grade markets, but they are coming in 2024 and 2025. Some of these cells can be purchased now in very large quantity, but for the average joe, building batteries at home DIY style the best mix of value and performance still likes in the 280ah capacity cells over the next few months.

Super Large Capacity LiFePO4 Cells

With the rapid development of the energy storage industry, the market demand for cells continues to outpace supply. Many companies are increasing cell capacity through technological iteration. Cell capacity is growing larger, from 306ah to 314Ah, 320Ah, 340ah and 360ah and then to 500ah 560Ah and 580ah cells

EVE LF560K (628Ah) LiFePO4 Cells

Last year, EVE Energy launched the LF560K battery, adopting cutting-edge Cell to TWh (CTT) technology tailored for TWh-scale energy storage applications. This enables extremely streamlined system integration and dual reduction in costs at both the cell and system levels. Global delivery is expected to commence in Q2 2024.

Keep in mind the DIY community won’t likely see these cells until at least 2025.

EVE LF560K (628Ah) LiFePO4 Cells
EVE LF560K (628Ah) LiFePO4 Cells

Compared to the LF280K battery, the LF560K battery can reduce components like busbars by almost half, whilst improving production efficiency by 30%. Container energy density can be increased by 6.5% allowing for lower costs for customers.

EVE LF560K 628Ah LiFePO4 Cells Data infomation 1

To address the key technological challenges facing the manufacture of ultra-large battery cells, EVE Energy has adopted a “stacking technique” to resolve issues with current collection and manufacturability in the LF560K battery’s electrode and current conductor design. Because the number of tabs per winding is doubled, solving the current collection problem and reducing DC IR by 8%. Prismatic sheet stacking replaces winding, doubling the single electrode sheet length, yields a 3% increase in total cell production .

EVE LF560K 628Ah LiFePO4 Cells Data infomation 2

The LF560K battery represents EVE Energy’s relentless pursuit of innovation and quality, built upon over 21 years of extensive experience in the battery industry and the strong R&D capabilities of its 3,100-member research team.

Currently, the mainstream energy storage cells on the market are 280Ah rectangular aluminum-cased cells. Many manufacturers are also reducing costs for downstream customers by improving cell volumetric density – that is, increasing capacity density per unit volume.

The 560Ah cell essentially doubles the common 280Ah rectangular cell size, equivalent to placing two 280Ah cells side-by-side. This aims to reduce PACK components and achieve cost reduction.

Although the 560Ah cell is not yet EVE Energy’s primary product, it has embarked on the path to commercialization. On February 1 this year, EVE Energy broke ground on its new “60 GWh Power Energy Storage Battery Super Factory” in Jingmen, Hubei, with 10.8 billion RMB investment. This factory will mass-produce the 560Ah energy storage cell. The 560Ah cell is expected to commence global delivery in Q2 2024.

Vision 580Ah LiFePOP4 Cell

On May 16, China’s largest battery exhibition, CIBF 2023, opened in Shenzhen. Thunder Corporation prominently displayed an ultra-high capacity cell.

The 580Ah ultra-large single-cell released by Thunder Corp is the largest capacity single-cell emerged so far globally.

Although the exhibit at CIBF appeared high-profile, it only showcased partial specs. The company claims 10,000 cycle life, 11kg weight per cell, 1856Wh nominal capacity, and 0.5C charge/discharge rate. But details such as packaging technology, mass production timeline, and delivery schedule remain unclear.

With over 10,000 cycle life, the 580Ah cell represents a two-pronged upgrade at both the cell and system levels, providing customers robust safety assurance and performance guarantee. Technologies such as low-expansion anode materials, full tab design, electrode surface treatment, and flexible electrode forming help resolve liquid infiltration challenges for large cells, enabling comprehensive safety protection and high cycle life through heat insulation, diffusion prevention, pressure relief, and more. This will better meet application requirements for grid-scale energy storage, greatly improving system safety, lifespan, and lowering life-cycle electricity costs.

Vision 580Ah LiFePOP4 Cell
Vision 580Ah LiFePOP4 Cell

Currently, there is no universally accepted single-model standard for energy storage cells, and the industry has not yet formed complete standardization. It is believed that with continuous technological breakthroughs and improved designs, more energy storage cell solutions will emerge over time.

Enterprises should pursue R&D across diverse cell models, material systems, and cost schemes. With market validation over time, superior cell designs will become proven, catalyzing new breakthroughs in energy storage cells. This is a crucial premise for the healthy development of the energy storage industry.

CATL 306Ah/314Ah LiFePO4 Cell

CATL New 306Ah 285Ah 280Ah LiFePO4 Cells 1024x768 1

CATL said that the mass production and delivery of 314Ah dedicated electric core for energy storage is another opportunity for the company to lead the development of energy storage system through technological innovation and bring new breakthroughs in the field of energy storage.

CATL 306Ah 285Ah 280Ah LiFePO4 Cells

It is understood that CATL EnerD series products use its energy storage dedicated 314Ah core, and equipped with CTP liquid cooling 3.0 high-efficiency grouping technology, optimizing the grouping structure and conductive connection structure of the core, while adopting a more modular and standardized design in the process of design and manufacturing, to achieve the 20-foot single compartment of the power from 3.354MWh to 5.0MWh, compared with the previous generation of products. Compared to its predecessor, the new EnerD series of liquid-cooled prefabricated energy storage pods saves more than 20% of floor space, reduces the amount of construction work by 15%, and decreases commissioning, operation and maintenance costs by 10%, and also significantly improves energy density and performance.

CALB 305Ah/314Ah LiFePO4 Cells

CALB 305Ah 314Ah LiFePO4 Cells 1024x630 1
CALB 305Ah & 314Ah LiFePO4 Cells
CALB 314Ah LiFePO4 Cell Data Infomation
CALB 314Ah LiFePO4 Cell Data & Infomation

SVOLT 325Ah LiFePO4 Blade Cell

SVOLT 325Ah LiFePO4 Blade Cell
SVOLT 325Ah LiFePO4 Blade Cell

GOTION 300Ah/340Ah LiFePO4 Cell

GOTION 340Ah LiFePO4 Prismatic Battery Cells 1
GOTION 340Ah LiFePO4 Prismatic Battery Cells

REPT 320Ah/340Ah LiFePO4 Cells

REPT 320Ah 340Ah LiFePO4 Cells
REPT 320Ah & 340Ah LiFePO4 Cells

BATTERO TECH 314Ah LiFePO4 Cell

兰钧 BATTERO TECH 314Ah LiFePO4 Cell
BATTERO TECH 314Ah LiFePO4 Cell

Great Power 320Ah LiFePO4 Cell

Great Power 320Ah 280Ah 220Ah 150Ah LiFePO4 Cells

Higee 314Ah/375Ah LiFePO4 Cell

Higee 375Ah LiFePO4 Cell
Higee 375Ah LiFePO4 Cell

ETC 314Ah LiFePO4 Cell

ETC 314Ah LiFePO4 Cell
ETC 314Ah LiFePO4 Cell

HTHIUM 300Ah/314Ah LiFePO4 Cells

海辰 HTHIUM 300Ah LiFePO4 Cell
HTHIUM 300Ah LiFePO4 Cell
海辰 HTHIUM 314Ah LiFePO4 Cell
HTHIUM 314Ah LiFePO4 Cell

Cornex 306Ah/314Ah/320Ah LiFePO4 Cells

楚能 Cornex 314Ah LiFePO4 Cell
Cornex 314Ah LiFePO4 Cell
楚能 Cornex 306Ah LiFePO4 Cell
Cornex 306Ah LiFePO4 Cell

Narada 305Ah LiFePO4 Cell

Narada 305Ah LiFePO4 Cell
Narada 305Ah LiFePO4 Cell

TrinaStorage 306Ah/314Ah LiFePo4 Cells

天合储能 TrinaStorage 314Ah LiFePO4 Cells
TrinaStorage 314Ah LiFePO4 Cells

SUNWODA 314Ah LiFePO4 Cell

SUNWODA 314Ah LiFePO4 Cell
SUNWODA 314Ah LiFePO4 Cell
SUNWODA 314Ah LiFePO4 Cell Data infomation
SUNWODA 314Ah LiFePO4 Cell Data infomation 2
SUNWODA 314Ah LiFePO4 Cell Data & infomation

JEVE 305Ah/360Ah LiFePO4 Cells

JEVE 305Ah 360Ah LiFePO4 Cell
JEVE 305Ah & 360Ah LiFePO4 Cell

COSPOWERS 305Ah LiFePO4 Cell

昆宇电源 COSPOWERS 305Ah LiFePO4 Cell
COSPOWERS 305Ah LiFePO4 Cell

shoto 315Ah LiFePO4 Cell

双登集团 shoto 315Ah LiFePO4 Cell
Shoto 315Ah LiFePO4 Cell

ZENERGY 314Ah LiFePO4 Cell

正力新能 ZENERGY 314Ah LiFePO4 Cell
ZENERGY 314Ah LiFePO4 Cell

Seeking the “Triangle Balance Point”

At the 320Ah capacity level, internal cell temperatures can surpass 800°C, exceeding the decomposition temperature of lithium iron phosphate and posing challenges to cell safety, energy density, manufacturing processes, and more.

Cell R&D also faces the classic ‘impossible trinity’ of high energy density, long cycle life, and high safety. Energy density is a priority consideration in nearly all cell design. Pursuing higher energy density requires thinner membranes and high pressure and areal density electrode materials. On one hand, such extremities make liquid infiltration more difficult, undermining cycling performance. On the other hand, thinner membranes and higher energy density materials also mean poorer safety. There is no avoiding the trade-off between energy density and performance. Prioritizing energy density may jeopardize cycle life and safety. Whereas uncompromising cycle life and safety comes at the cost of lower energy density and weaker competitiveness. Most companies aim for a balanced sweet spot.

Cell manufacturers often tout cycle life figures of 6,000, 8,000, 10,000 even 18,000 based on specific controlled test conditions and model extrapolation. But actual cycle life is lower when cells are packaged into battery packs and deployed in energy storage systems. We expect a lifespan of about 3-18 years depending on the Depth of discharge, C rate, thermal and Battery Management put into place by each individual builder. That is a significant difference, because batteries are not invincible, but LiFePo4 is really versatile.

The 280Ah cells released in 2020 were produced by less than three manufacturers in 2021. Becoming mainstream in energy storage power stations in 2022, failure rate issues can be expected to surge around 2025 after initial installations complete their lifespan. Time will tell.

Safety Depends on Multiple Factors

Larger cells are a double-edged sword – cost reduction and accelerated market growth come with technical challenges and safety concerns. At the system level, safety depends on factors including cell design, thermal propagation isolation, early warning systems, fire prevention systems, and more.

Looking narrowly at the cell perspective, rising manufacturing automation enables producers to strengthen quality control capabilities. Meanwhile, breakthroughs in automated inspection equipment and methodologies screen cell safety before leaving factories.

Advancements in materials such as more thermally/chemically stable membrane systems and additives will also continuously improve battery safety and stability. But from an electrochemical standpoint, absolute safety remains elusive for lithium-ion batteries given inherent risks requiring mitigation through system design, monitoring, emergency response, and other management strategies. Therefore, a systematic approach will define future safety design.

X

Please enter your email address to receive your cart as a PDF.