fbpx
News
Safe Installation of LiFePo4 Batteries in Australia

AS/NZS 5139-2019 Compliance Guide for a 15kWh, 51.2V, 300Ah Lithium Battery with LiFePO4 Cells

All of our LiFePro Batteries are designed to comply with IEC62619 for installation to AS/NZS3001.2:2022 standard. Our Lithium batteries are designed to comply to IEC62619 and therefore can usually be installed in most applications.
We are currently working on the application and certificate of IEC62619 for a number of our batteries. You can reach out to find out more by calling us on (07) 4191 6815

Compliance vs. Certification

Compliance:

  • When a battery complies with IEC 62619, it means that the battery has been designed and manufactured to meet the requirements and criteria set out in the IEC 62619 standard.
  • This compliance could be based on internal testing and assessments conducted by the manufacturer to ensure that the battery meets the necessary safety and performance specifications outlined in the standard.

Certification:

  • Certification, on the other hand, involves a formal process where an accredited third-party testing organization tests and verifies that the battery meets the IEC 62619 standard.
  • This process includes rigorous testing under controlled conditions and results in an official certificate or mark that indicates the battery has been independently verified to meet the standard.
  • Certification provides a higher level of assurance and credibility to customers and regulators, as it involves independent validation.

Why Certification Matters

  • Market Acceptance: Many markets, industries, and customers require certified products to ensure safety and reliability. Certification can be a requirement for selling products in certain regions or for use in specific applications.
  • Liability and Compliance: Certification can protect against liability and regulatory issues, as it demonstrates that the product has been independently verified to meet recognized safety standards.
  • Customer Confidence: Certification provides customers with confidence in the quality and safety of the product, which can be a key differentiator in the market.

1. Introduction

AS/NZS 5139:2019 sets the standards for the safe installation of battery energy storage systems (BESS) in Australia and New Zealand. Compliance with this standard ensures the safety and reliability of your lithium battery system. This guide will help you meet these standards for your 15kWh, 51.2V, 300Ah lithium battery containing LiFePO4 cells. To ensure the safety and compliance of your 15kWh, 51.2V, 300Ah lithium battery system, it’s important to adhere to both AS/NZS 5139:2019 and additional regulations specified in AS/NZS 3000:2018

2. System Design

2.1 Battery Specification

  • Capacity: 15kWh
  • Voltage: 51.2V
  • Current: 300Ah
  • Chemistry: Lithium Iron Phosphate (LiFePO4)

2.2 Key Components

  • Battery Management System (BMS)
  • Inverter/Charger
  • Safety Enclosure
  • Circuit Protection Devices (Fuses/Breakers)
  • Cabling and Connectors

3. Installation Site Requirements

3.1 Location

  • Battery Location & Restrictions:
  • Install the battery system in a well-ventilated, cool, and dry area.
  • Avoid direct sunlight and ensure the location is away from flammable materials.
  • Batteries cannot be installed in restricted locations such as near gas appliances and gas cylinders. Specifically, there are exclusion zones for electrical installations near gas relief vent terminals to prevent ignition hazards (AS/NZS 3000:2018, Section 4.18)​ (GSES)​.
  • Ventilation and Environmental Requirements:
  • Ensure the installation site provides adequate ventilation to avoid overheating and accumulation of gases. The location should maintain temperatures within the limits specified by the manufacturer and control humidity levels to prevent condensation​ (Standards.govt.nz)​​ (GSES)​.

3.2 Access and Clearances

  • Ensure clearances around the battery system for maintenance and ventilation as specified by the manufacturer.
  • Allow at least 600mm clearance around the battery enclosure.

3.3 Environmental Conditions

  • Install the system within the environmental conditions specified by the manufacturer (e.g., temperature, humidity).

4. Safety Considerations

4.1 Battery Enclosure

  • Use a non-combustible, weatherproof enclosure with an IP rating appropriate for the installation location (e.g., IP65 for outdoor installations).
  • The enclosure should have ventilation to prevent the accumulation of gases.

4.2 Fire Safety

  • Install fire-resistant barriers as required.
  • Maintain a safe distance from ignition sources.
  • Ensure the system is equipped with a fire suppression system if required by local regulations.
  • Fire Safety and Hazard Protection:
  • Install fire-resistant barriers and maintain safe distances from potential ignition sources. A fire suppression system may be required depending on local regulations​ (Smart Energy Council)​(GSES)​.

4.3 Emergency Shutdown

  • Provide an accessible emergency shutdown switch.
  • Ensure clear labeling and instructions for emergency procedures.
  • Documentation should include detailed installation, operation, and maintenance instructions, along with clear labeling for emergency shutdown procedures​ (Standards.govt.nz)​​ (Clean Energy Council)​.

5. Electrical Installation

5.1 Circuit Protection

  • Install DC fuses or circuit breakers appropriately rated for your battery system to protect against overcurrent conditions. Proper cable sizing is essential to minimize voltage drop and prevent overheating​ (Standards.govt.nz)​​ (GSES)​.

5.2 Cabling

  • Use cables rated for the maximum current and voltage of the battery system.
  • Ensure cables are correctly sized to minimize voltage drop and heat generation.
  • Secure and protect cables against physical damage.

5.3 Earthing and Bonding

  • Earth the battery system according to AS/NZS 3000:2018.
  • Ensure all metallic parts are bonded to prevent electrical shock hazards.

5.4 Inverter/Charger Integration

  • Connect the battery system to the inverter/charger according to the manufacturer’s instructions.
  • Ensure the inverter/charger is compatible with the battery’s voltage and current specifications.

6. Battery Management System (BMS)

6.1 Functions

  • Overcharge/Over-discharge Protection: The BMS monitors the state of charge and prevents the batteries from being overcharged or excessively discharged, which can damage the cells and reduce their lifespan.
  • Temperature Monitoring and Control: The BMS tracks the temperature of the cells and the environment to prevent overheating. It can shut down the system or reduce the charge/discharge rates if temperatures exceed safe levels.
  • Cell Balancing: The BMS ensures that all cells in the battery pack are charged equally, preventing any single cell from becoming a weak link and reducing the overall capacity and lifespan of the battery.
  • Communication: The BMS communicates with external systems like the inverter/charger to provide status updates, alerts, and control signals.
  • Sound Alarm: The BMS must be equipped with an audible alarm to alert users in case of critical issues such as overcharge, over-discharge, overheating, or any other condition that might lead to a hazardous situation. This is part of ensuring that the system can provide immediate alerts to prevent accidents and enable timely intervention.

6.2 Installation

  • Manufacturer’s Instructions: Follow the specific installation instructions provided by the BMS manufacturer. This includes wiring, sensor placement, and configuration settings.
  • Configuration: Set up the BMS to match the parameters of your battery system. This might involve setting voltage thresholds, temperature limits, and other protective settings.

7. Documentation and Labeling

7.1 User Manual

  • Provide a detailed user manual including installation, operation, and maintenance instructions.

7.2 Labels

  • Clearly label the battery system with the following information:
    • Manufacturer name and contact details
    • Model and serial number
    • Electrical ratings (voltage, current, capacity)
    • Safety warnings and emergency shutdown instructions

8. Testing and Commissioning

8. Testing and Commissioning

8.1 Pre-Installation Testing

  • Component Testing: Before installing, test each component (battery cells, BMS, inverter/charger, etc.) to ensure they are functioning correctly. This includes checking for proper voltage, current, and any manufacturer-specific tests.

8.2 Post-Installation Testing

  • Inspection: After installation, perform a thorough inspection to ensure all components are correctly installed, all connections are secure, and there are no signs of damage.
  • Continuity and Insulation Tests: These tests check that the electrical connections are correct and that there are no unintended paths for current that could cause short circuits.
  • Functional Tests: Verify that the BMS and protective devices (fuses/breakers) operate correctly. Simulate fault conditions to ensure they respond appropriately.
  • Inverter/Charger Operation: Check that the inverter/charger correctly charges and discharges the battery and that it communicates effectively with the BMS.

9. Maintenance and Monitoring

9.1 Regular Inspections

  • Conduct regular inspections to ensure the system remains in good condition.
  • Check for signs of wear, corrosion, or damage.

9.2 Monitoring

  • Use monitoring systems to keep track of battery performance and health.
  • Regularly check BMS data for any anomalies or alerts.

10. Compliance and Certification

10.1 Certification

  • Obtain certification from a qualified electrical inspector to ensure the installation complies with AS/NZS 5139:2019.

10.2 Documentation

  • Keep records of all installation, testing, and maintenance activities.
  • Ensure all documentation is available for inspection by regulatory authorities.

News Manufacturers
EVE Lithium LFP Cells List 3.2v

A list of cells manufactured by EVE in July 2024.
It details the capacity, energy density, estimated cycle life, weight, and Internal resistance of each cell.

Using this information you might be able to decide what cells suit your application best.
For example the LF50k cell is rated for 7000 cycles at 1C charge and discharge. But its energy density is very low. The main reason it gets such a good rating is because it can be actively cooled or heated in the right application, which can help tremendously with lifespan.
However you will also note that cycle life is now mostly spoken about at 0.5C or P. Meaning much of the information previously released has been further corrected over time.
All of these numbers are best case scenario, and usually at 25 degrees Celsius. So these numbers are basically unattainable in most cases.

Model
Capacity (Ah)
Voltage (V)
Cycle(time) 25°C
Internal Resistance (1KHz)
Weight (g)
Length × Width × Height (mm)
Energy Density (Wh/kg)
LF22K
22
3.22
4500 (3C/3C)
≤0.4mΩ
628±10
148.7×17.7×131.8
112
LF32
32
3.20
3500 (1C/1C)
≤1.5mΩ
730±50
148.3×26.8×94.3
140
LF50F
50
3.20
1500 (0.5C/0.5C)
≤2.0mΩ
1035±100
148.3×26.7×129.8
154
LF50L
50
3.20
5000 (0.5C/0.5C)
≤0.6mΩ
1090±50
148.6×39.7×100.2
154
LF50K
50
3.20
7000 (1C/1C)
≤0.7mΩ
1395±50
135.3×29.3×185.3
114
LF80
82
3.20
4000 (0.5C/0.5C)
≤0.5mΩ
1680±50
130.3×36.3×170.5
156
LF90K
90
3.20
6000 (1C/1C)
≤0.5mΩ
1994±100
130.3×36.3×200.5
144
LF100MA
101
3.20
2000 (0.5C/0.5C)
≤0.5mΩ
1920±100
160.0×50.1×118.5
168
LF100LA
102
3.20
5000 (0.5C/0.5C)
≤0.5mΩ
1985±100
160.0×50.1×118.5
164
LF105
105
3.20
4000 (0.5C/0.5C)
≤0.32mΩ
1980±60
130.3×36.3×200.5
169
LF125
125
3.22
4000 (0.5C/0.5C)
≤0.40mΩ
2390±71
200.7×33.2×172.0
168
LF150
150
3.22
4000 (0.5C/0.5C)
≤0.4mΩ
2830±84
200.7×33.2×207.0
170
LF160
160
3.22
4000 (0.5C/0.5C)
≤0.21mΩ
3000±100
173.9×53.8×153.5
171
LF173
173
3.22
4000 (0.5C/0.5C)
≤0.25mΩ
3190±96
173.9×41.06×207.5
174
LF230
230
3.20
4000 (0.5C/0.5C)
≤0.25mΩ
4140±124
173.9×53.8×207.2
177
LF280K
280
3.20
8000 (0.5C/0.5P)
≤0.25mΩ
5490±300
173.7×71.7×207.2
163
LF304
304
3.20
4000 (0.5C/0.5C)
≤0.16mΩ
5450±164
173.7×71.7×207.2
178
LF560K
560
3.20
8000 (0.5P/0.5P)
≤0.25mΩ
10700±300
352.3×71.7×207.2
167
MB30
306
3.20
10000 (0.5P/0.5P)
≤0.18mΩ
5600±300
173.7×71.7×207.2
174
MB31
314
3.20
8000 (0.5P/0.5P)
≤0.18mΩ
5600±300
173.7×71.7×207.2
179
V21
154
3.22
2000 (0.5C/0.5C)
≤0.5mΩ
2755±30
110.0×35.7×346.4
182
A22
178.1
3.22
2000 (0.33C/0.33C)
≤0.3mΩ
3170±230
280.7×31.0×88.6
180
A24
172.1
3.22
2000 (0.33C/0.33C)
≤0.45mΩ
3160±240
301.0×36.7×132.5
175
A31-V1
132.5
3.22
2000 (0.33C/0.33C)
≤0.45mΩ
2370±230
194.3×50.7×112.7
180
A31-V2
141
3.22
2000 (Fch/1C)
≤0.45mΩ
2450±230
194.3×50.7×112.7
185
A27
127.2
3.21
2000 (Fch/1C)
≤0.45mΩ
2220±330
88.0×37.2×309.5
183
A28
87.5
3.22
2500 (0.33C/0.33C)
≤0.57mΩ
1645±30
301.8×26.7×94.9
171
News Lithium Battery-school
The Lifepo4 QR code B to A Grade problem

Q. What is a QR Code?
A. Its a 3D barcode

Q. What is a Barcode?
A. A visual representation of data

Q. Can a barcode be scanned to verify authenticity of unique products?
A. NO! A QR code does NOT authenticate product genuineness because it can be easily copied or duplicated by anyone.

Put Simply, if I have some text or numbers, I can quickly and easily generate a QR code. It is static data. It does not connect to EVE or any other manufacturer.

Q. Why I keep writing these articles over and over?

Part 1

I am observing that most sellers in Australia (Melbourne, Sydney, Rockhampton, Perth, and Brisbane) sell B grade cells as A grade. They either don’t care, or they don’t know themselves. It’s really disappointing.

I have to defend our own business sometimes, yet those same people attacking me are under the impression that the other sellers are selling genuine products, but I KNOW they aren’t.

a) I know because I have seen their cells in person, and I have seen the packaging. I can see they are buying from QSO, Basen, Docan, or EEL by the boxes, the stickers, the busbars, and the QR CODE! b) I have spoken to most of the sellers personally. c) I have seen the evidence over and over again.

Part 2

I have always known what a barcode and therefore a QR code is. I have personally worked in stock control systems since I was a teenager and in IT for years. I sold and supported stock control systems. We work with barcodes all day, and we know what a keyboard wedge is. (I know that 99.8% of people do not.)

Part 3

I only recently realized that most (not all) people do not understand what they are or how they work.

I’ve watched multiple people scan the code, thinking they were connecting to an authenticity server or something. Recently, I actually watched a guy scan his “known fake” jacket, which had a QR code on it, and I finally realized that people just don’t understand this technology in general.

Let me say this in BOLD red text!

QR CODES DO NOT AND CAN NOT VERIFY AUTHENTICITY

QR Codes for DUMMIES

Below this paragraph I have given you a QR code generator. You can make it do whatever you want within a set number or characters. It can create any data, like

If I have a spreadsheet with genuine QR codes, I can then generate a QR Code. If someone gets a hold of a spreadsheet like this one, attatched here. EVE uses a 24 character “string” of numbers and letters as their identifier.
1200px .xlsx icon.svg1
Click it to download the spreadsheet of real QR codes, from a real EVE spreadsheet

Use this tool in orange, to create your own EVE barcodes using the Spreadsheet.

In Depth detail of QR codes

The amount of text a QR code can hold depends on the version and error correction level. Here’s a general idea:

  • A standard QR code (Version 40, the largest version) can hold up to:
    • 7,089 numeric characters
    • 4,296 alphanumeric characters
    • 2,953 binary (8-bit) bytes

However, practical QR codes used in everyday situations usually hold much less data to ensure they are easily scannable.
For best results, it’s advisable to keep the text short, typically under 300 characters, to maintain quick and reliable scanning.

Summary

EVE and others like them use QR codes for internal tracking while manufacturing battery cells. They are not there for the end user, to verify the authenticity.

QR Code created with a QR Generator by LiFePo4 Australia

THIS QR will have the string of data “https://www.lifepo4.com.au” You can scan this with a camera app, or a QR Code scanner and it will take you to this website, it won’t work with the LIFEPO4 QR Scanner, because that app has been modified to interpret batteries only.

If you have the spreadsheet with genuine QR codes, You can then generate a QR Codes and upload them to the Laser Engraver, and every 5 seconds you can laser engrave a new QR code onto a B grade cell, making it appear as a genuine A grade product, that even matches the spreadsheet you are look at.

Stop thinking chinese people are not educated, the truth is that many chinese, over 100 Million of them hold college degrees, they are smarter that you, almost certainly. And it only takes a few to tell the others what to do. Just like an egineer would do in Australia to his subordinates. As of recent data, approximately 18.3% of Chinese people hold higher education degrees.
That means, that there are more educated people in china, than the entire population of USA and Australia combined.
It also means that there are at least 10-20 educated chinese people for every one of us.
Make your own judgement.

image

How to use a spreadsheet to generate and print new QR codes with a Laser

If someone (think shady chinese battery mafia figure) gets a hold of a spreadsheet like this one, attatched here. They can then upload the data onto the Laser Machine, then one by one, they will write over the top of the Invalid or B Grade QR Code. Thus making a Battery cell with 280ah appear to be a 330ah cell.

It is really simple, the entire process takes a few seconds at most per cell. I have seen a video of this being done, I did not have the ability to save that video, and I can not seem to find it no matter how hard I google, and Baidu it. The videos are private for obvious reasons. But they do exist.

The Process of QR code Re-Lasering

Q How does QR replacement take place, and who is doing it?

A. In china, there are vast warehouses full of products that did not meet specifcations for use in commercial or high voltage battery pack use. They are still batteries, and they work, but for how long I hear you ask?

“how long is a piece of string”

High Voltage Module and A grade Pack disassembled

QR CODES DO NOT AND CAN NOT VERIFY AUTHENTICITY

Summary
A QR code is like a sticker. Anyone can print the same sticker and put it on anything, so it doesn’t prove the product is real. Only trusted sellers, like us, can guarantee the product’s genuineness. 

How to decode the data from EVE LFP Batteries

This is the EVE format of a QR code

How to Quickly Identify Fake Batteries Part 3 QR code parsing

Why a Lifepo4 QR Scanner app does NOT verify the Authenticity or Genuineness of Batteries

As we have discussed, a QR code is STATIC,
1. It does not connect to a database and return anything that can be used to know if the product is real or fake.

The Lifepo4 QR Scanner App, has a database, (think of it as a big spreadsheet. The database contains all the cell models, and some logical programming for the app to be able to decode all known QR codes. The user who created this app, did this to assist the community to try to know what product of battery cells, and where they were made and what capacity they were.
He has been able to gather enough data to make it work for the most popular manufacturers.

Once he has this image and others like it from the other manufacturers, he can very easily decode the important data, and that will return you a result on what that QR is supposed to be attached or printed on. (notice I said supposed)

H95df8f324b3a4959bece3fdc98ad34dbm1How to Quickly Identify Fake Batteries Part 3 QR code parsing
Why Does all this even matter?

In a high voltage battery pack, it’s crucial that the batteries in series are matched and high quality because:

  1. Balanced Performance: Matched batteries ensure consistent performance, as each battery will charge and discharge at the same rate.
  2. Safety: High-quality batteries reduce the risk of failures, such as overheating, leaks, or explosions.
  3. Longevity: Using matched and high-quality batteries extends the overall lifespan of the pack by preventing weak batteries from causing the entire pack to degrade faster.
  4. Efficiency: Ensures that the battery pack operates at optimal efficiency, providing reliable power output without losses due to imbalance.

By ensuring batteries are matched and high-quality, you maintain the safety, efficiency, and durability of the high voltage pack.

But wait there is more!

If a single battery cell in a high voltage pack is faulty, it impacts the entire pack because:

  1. Chain Reaction: In a series configuration, the current flows through each cell in the chain. A faulty cell disrupts this flow, reducing the pack’s overall performance.
  2. Reduced Capacity: The faulty cell limits the pack’s capacity to the weakest cell, causing the whole pack to discharge faster and reducing its overall capacity.
  3. Safety Risks: A single faulty cell can overheat or fail, potentially causing damage to adjacent cells and posing safety hazards like fires or explosions.
  4. Increased Wear: The healthy cells are forced to compensate for the faulty one, leading to uneven wear and shortening the lifespan of the entire pack.

In summary, a single faulty cell can degrade the performance, capacity, and safety of the whole pack, highlighting the importance of ensuring all cells are high quality and well-matched.

Now the best way to explain this. using math

if you have 16 cells in series, all of which are 330ah, though a single cell has only 150ah of capacity, then the entire pack will loose 55% of its capacity.

In this example the single cell, limits the pack to a total of 16 x 150ah. Making your pack only 7.6Kwh, when it should be 16.8kwh.

In dollars in todays market, this would mean,

A $5000 investment would loose $2750 in value.

Making your battery worth only $2250

Not only this but the cell will continue to cause problems, causing your power to cut off regularly, and remain out of balance, and it will strain every other component in your pack.

Not only this but the cell will continue to cause problems, causing your power to cut off regularly, and remain out of balance, and it will strain every other component in your pack.

Notice these are 2023-2024 cells, V3 LF280K or MB31

News Lithium Battery-school
Understanding Lithium Battery Cell Purchasing from China: Navigating Quality and Shipping Challenges

The process of purchasing from China lithium battery cells, particularly for do-it-yourself (DIY) projects, is fraught with complexities and pitfalls, largely stemming from issues of quality and shipping. As a specialist in the field with extensive experience, I aim to experienced on these challenges, providing insights that stem from my personal journey in navigating this treacherous terrain.

The Allure and Risks of Using Alibaba

Many importers continue to be drawn to platforms like Alibaba due to apparent cost savings and convenience. However, a significant risk lurks beneath the surface: approximately 90% of importers end up with subpar, or “B grade,” cells. This pervasive issue is largely attributable to the shipping practices and the inability to visually distinguish between A and B grade cells.

Why Most Cells Are B Grade

The core of the problem lies in the shipping practices employed by many Alibaba vendors. These sellers often resort to “black market shipping,” where containers filled with dangerous goods (like lithium batteries) are not properly declared. This involves using what is known in Chinese as “special line” shipping, which typically involves bribes to customs officials in both China and Australia.

This unorthodox approach allows sellers to dramatically reduce shipping costs—sometimes by half compared to reputable companies like EVE Energy, which adhere strictly to international shipping regulations for dangerous goods. EVE Energy, being a billion-dollar enterprise, cannot risk the legal and ethical implications of concealing dangerous goods in regular shipments.

The Difference Between A and B Grade Cells

From a technical perspective, A and B grade cells may appear identical, but their performance and reliability diverge significantly. EVE Energy, for instance, implements rigorous testing procedures during their 3-4 week manufacturing process. This includes specialized charging processes, capacity checks, and voltage tests, which classify cells into categories like A+, A, B, and B- grades. Up to 40% of cells are downgraded to a lower grade due to identified defects during these tests.

Our Approach: Ensuring Quality and Compliance

Given the complexities of legally and safely importing lithium cells, I have taken the route of organizing my own shipping and securing necessary certifications for transporting dangerous goods. This approach, while time-consuming and complex, ensures that I provide only A+ grade cells, unlike the prevalent B grade cells that flood the Australian market through less scrupulous importers.

The Misrepresentation by Alibaba Sellers

A common tactic among Alibaba sellers is falsely representing B grade cells as A+ grade. This misrepresentation is facilitated by the structure of the supply chain, where cells are warehoused en masse and drop-shipped by vendors who often operate merely as call centers. The consequence is a market flooded with inferior cells sold under the guise of top-tier quality.

Conclusion: Navigating the Lithium Cell Landscape

The challenges of purchasing lithium battery cells from China revolve around navigating through a murky landscape riddled with deceptive practices and regulatory challenges. My expertise and commitment to quality and safety have allowed me to overcome these barriers, ensuring that I can provide genuinely high-grade lithium cells.

This situation underscores the importance of rigorous due diligence and understanding the intricate dynamics of international shipping and quality control. By sharing my experience, I aim to enlighten potential buyers and DIY enthusiasts on the pitfalls of the market and the critical importance of sourcing from reliable and ethical suppliers.

In simpler terms, buying lithium battery cells from China can be tricky. Many buyers (importers) get tempted by lower prices on platforms like Alibaba, but often end up with lower-quality, “B grade” cells due to shady shipping practices where sellers don’t declare dangerous goods properly to cut costs. This is risky and against the law.

On the other hand, reputable companies like EVE Energy follow strict shipping rules, which makes their cells more expensive but ensures they are of high quality. I’ve gone the extra mile to organize my own shipping and make sure everything is above board, which means I only provide top-quality, “A+ grade” cells.

To put it plainly, if you’re looking to buy lithium cells, it’s crucial to understand that the cheapest option might end up costing you more in the long run due to poor quality. It’s better to pay a bit more for cells that are safely and legally shipped, ensuring you get what you pay for—reliable and effective batteries.

To clearly highlight our approach: we manage our own shipping and customs processes entirely within legal frameworks. This commitment to legality and ethical practices sets us apart from many sellers around the world who often resort to shortcuts like purchasing from Alibaba to save on shipping costs.

By purchasing in bulk and overseeing every step from customs clearance to delivery, we ensure that we provide only A+ grade cells. This direct involvement allows us to maintain high standards of quality and safety, unlike many other sellers who compromise on these aspects to reduce expenses. This unique approach ensures that our customers receive the best possible product without the common risks associated with improperly handled imports.

Probably the best information we can give you is to outline the actual practices

  1. EVE might sell a battery for $68-78 USD A+ grade
    Shipping might be $500-800 AUD for 16 cells (Its always more expensive because its legal shipping)
  2. Alibaba sellers buy B grade cells from anywhere between 50-75% of the A+ grade price.
    This means $34-56 USD
  3. The Alibaba seller will then quote you $63-$78 for that same cell
    But not only that there shipping quote to you might be $300-600.
  4. The price is not that important, BUT! they are also making profits on the shipping because its not DG shipping. Its illegal.
  5. They do not declare the Batteries as DG in Australia either, so they pay $100’s of dollars less for this shipping pathway.
  6. This is all profit. The process has been improved over a few years. So its now down to only a couple of shipping companies who handle all of the deliveries in Australia
  7. In many cases, they do not pay GST either or only a tiny fraction of what should be paid.
    This is our money, our countries money, that is supposed to go back into, schools and hospitals and such for the benefit of our country. No in the pockets of overseas companies who are also selling bad cells to us.

The total price is always lower through Alibaba sellers. The Alibaba seller makes $20-35 USD more per cell. This means they can put signinificant effort into replacing a QR code with valid data.

The Laser etching technique which is used to replace a QR code, machine is a very cheap investement when we are talking about replacing the QR code of thousands of cells a day. The investement into this machinery and process is now extremely profitable.

The cells are purhased in lots of thousand and hundreds of thousands. They are transported to a warehouse/ processing centre. where they are graded again and then relabelled with a new QR code. The QR code is from genuine A+ grade cells. A QR code is just letters and numbers. So this data is taken from a genuine batch of A+ grade cells. The spreadsheets from EVE A+ grade cells are used to create what appears to be A+ grade cells. This process costs about $1.50 USD per cell.

News Lithium Battery-school
Comparing the most popular 300AH Lifepo4 cells

Comparing the EVE LF304 to the LF280, LF280K, and LF280k v3, MB30, MB31 we can analyze the key differences and similarities among these popular Lifepo4 cells.

You can also find out why the next generation of MB (Mr Big) cells is better than the last, mostly due to the new stacking technique being employed by just a small number of LFP manufacturers. At this stage CATL, EVE have next generation cells, not yet freely available. But in the near future, you will be able to purchase these cells if you don’t buy them from the grey markets.

EVE LF304

EVE 304ah 300Ah 310Ah 320Ah
LF304 EVE

The EVE LF304 has a cycle life of 4000 at 0.5C/0.5C. Giving it an estimated lifespan of up to 11 years.
The EVE LF304 is EVE’s high power cell, with thicker coatings,

Capacity: 304Ah
Nominal Voltage: 3.2V

Production technology – Winding

LF280

LF280

The EVE LF280 has a cycle life of 4000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 11 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Maximum Continuous Discharge 1C
Production technology – Winding

LF280K

eve lf280k 2
EVE LF280K

The EVE LF280K has a cycle life of 6000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 16 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Cycle Life @ 0.5C : 6000 Cycles
Production technology – Winding

LF280k v3

The EVE LF280K has a cycle life of 6000 cycles (A+ Grade 8000 Cycles) at 0.5C/0.5C. Giving it an estimated lifespan of up to 16 years
Capacity: 280Ah
Nominal Voltage: 3.2V

Cycle Life: 6000 Cycles (A+ Grade 8000 Cycles)
Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

MB30

The EVE MB30 has a cycle life of 10000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 20-25 years
Capacity: 306Ah
Expected Real measured capacity when new 320+AH
Nominal Voltage: 3.2V

Cycle Life: 10000 Cycles
Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

MB31

The EVE MB31 has a cycle life of 8000 cycles at 0.5C/0.5C. Giving it an estimated lifespan of up to 20-25 years
Capacity: 314Ah
Expected Real measured capacity when new 330+AH
Nominal Voltage: 3.2V
Advertised Cycle Life: 8000 Cycles

Maximum Continuous Discharge 1C
Recommended Discharge 0.5C

Production technology – Stacking

Stacking vs Winding

Longer life span
The stacked battery cell has more tabs, the shorter the electron transmission distance, and the smaller the resistance, so the internal resistance of the stacked battery cell can be reduced, and the heat generated by the battery cell is small. The winding is prone to deformation, expansion and other problems, which affect the attenuation performance of the battery.

Comparing process of stacking battery vs winding

Stacking
Winding
Energy density
Higher. Higher space utilization.
Lower. There is a C angle, and the larger the capacity, the lower the utilization rate.
Structural stability
Higher. The internal structure is uniform and the reaction rate is relatively low.
Lower. There is a C angle, which leads to uneven rate of internal reaction of charging and discharging.
Fast charging adaptation
Better. The multi-pole plates are connected in parallel, the internal resistance is low, and the charge and discharge of large current can be completed in a short time, and the rate performance of the battery is high.
Poor. During the charge and discharge process, the degradation rate of the active material at the high temperature position is accelerated, and the other positions are rapidly attenuated.
Safety
The risk is low. Stress distribution is more consistent, which keeps the interface flat and more stable.
Lower. Potential problems such as powder shedding, burrs, pole piece expansion, and separator stretching are easy to occur at the bend.
Cycle life
Longer. Low internal resistance, relieve battery heating during fast charging, improve battery chemical system stability and prolong service life.
Shorter. It is easy to deform in the later stage, which in turn affects the cycle life of the battery.
Productivity
Large-capacity batteries are generally low, mainly 6-8PPM.
Higher, generally at 12-13PPM.
Yield
Low, the glitch problem is prominent.
Higher automation, higher yield rate, higher number of pole pieces.
Process maturity
Low, the number of pole pieces is large, and the investment in equipment is large.
Higher, fewer pole pieces, mature equipment and low investment cost.

Summary of new technology

Technologies such as low-expansion anode materials, full tab design, electrode surface treatment, and flexible electrode forming help resolve liquid infiltration challenges for large cells, enabling comprehensive safety protection and high cycle life through heat insulation, diffusion prevention, pressure relief

What to choose for a battery with the longest lifespan.

EVE MB30 Automotive A+ verified cells directly supplied from EVE, not via a third party, not via Alibaba, and not from most resellers and battery pack manufacturers including almost all battery builders in Australia and China, unless they can provide you with a) the official eve delivery report for the cell purchase, and b) evidence that the QR code is genuine and not re-lasered.
The B grade to A grade problem is going to be larger with the new models the LF280K v3 which is actually the MB30

A genuine QR code should be shiny behind the data that has been printed.

CleanQR wpp1710016061418
QR EVE LF304
Lithium Battery-school
How to Top Balance Lifepo4
  1. Hook up the LiFePO4 cells in parallel – (that means connecting all the positives together and the same for the negatives.)
  2. Charge to 3.45V with a regulated DC power supply with overvoltage protection. This part takes a long time! And your power supply should be large enough to cater to your needs. Our exclusive 30amp Lab supply is voltage and current limited here.
    IMPORTANT – DO NOT CHANGE THE VOLTAGE AFTER CONNECTION TO THE CELLS
  3. Once it hits 3.45V, then adjust the target voltage to 3.65V, keep an eye on the cells during this stage, the voltage will rise very rapidly and it’s good not to rely solely on the overvoltage protection feature of the power supply. Check with a multimeter very regularly.
  4. Once you hit 3.65V, turn off the power and leave for an hour or more. Check to see if it’s still over 3.5V. If not, charge it up to 3.65V again and leave it for another hour. Repeat until it does.
  5. Once done, reassemble the pack into your desired battery Voltage eg. 12V or 24V, and discharge
  6. Storing at a high level of charge is not good for the LiFePO4 cells. If storing for a long time, discharge down to 30-50%. If possible, keep the battery below 90% SOC and above 10% SOC. It will increase the lifespan of the cells. And definitely help with cell bloat.

    Congratulations you have successfully manually top balanced.

An alternative (not ideal or recommended) way to top balance a battery pack with a BMS, such as the JBD BMS is to connect the battery cells in series, and slowly, incrementally increase the pack voltage inside the Bluetooth app. (occasionally this will not work if the cells are at different SOC, please be aware, it could take weeks to balance if that were the case, and therefore it’s not usually recommended unless you don’t have any access to an appropriate voltage limited Lab supply)

1. Wire up the Battery in series. Eg, connect the 4 cells (positive to negative) Which will create a battery of about 13.2V for a 4s LiFePo4 Battery.
2. Charge with a charger between 14v and 14.6v. Slower is better
3. Inside the JBD Bluetooth app (XiaoXiang), set the fully charged voltage to 3.45v, and a total pack voltage of 13.8v and charge it until the BMS stops. Inside the app turn off the charge balancing feature and leave until all the cells are balanced.
4. The following day or more inside the BMS Bluetooth app settings increase the pack voltage to 14.4v (3.6v per cell) or 14.6v (3.65v) and ensure the balance on charge is turned off. The battery will then go and top balance itself. Leave here until balanced

Blog Lithium Battery-school Manufacturers
Hithium 280ah 300ah and 320ah cell Lifepo4 Review

Wondering about Hithium Lifepo4 cells quality?

Hithium 280Ah cells are a type of lithium iron phosphate (LiFePO4) battery cells. They are known for their high energy density, long cycle life, and safety features123.

Information about the cell. The cell is identical to the current reference design of a prismatic Lifepo4 cell with the dimensions of 207mm x 173mm x 71mm. These are identical in every way to the cells made by CATL, EVE, CALB, GOTION, BYD, GREAT POWER, REPT, SUNWODA and the list goes on. All of these currently manufacturer this exact same cell, with the exact same dimensions. They all use the same ingredients, with very minute differences to the cathode and anode and electrolyte mixture.

202303301648005656
290AH
Hithium 280AH
  • Product certifications:
    IEC 62619, UL 1973, UL 9540A, UN 38.3
  • Company certifications:
    ISO 9001, ISO 14001, ISO 45001
  • Environmental Compliance: ROHS, REACH

High safety

  • Hithium-developed prismatic LFP cell with high thermal stability
  • Passes crush and nail penetration test
  • Ultra wide operating temperature range


Overall this cell is modified to last longer. Although the truth is the cycle count can be manipulated such as 6000 cycles at 80% is the same as 9000 cycles at 70% and so on. So the claim of 10000 cycles is probably true. Especially considering they are made with the intention of Energy storage, so with a Hithium cell you know you are getting something that will last a very long time.

3.2V 280Ah LiFePO4 Battery Prismatic Cell With 10000cycles (evlithium.com)

News Blog
Kings vs Voltx Lithium Battery

Lets start with The Kings 120Ah Lithium LiFePO4 Battery it’s a reliable and versatile energy storage solution. Let’s explore its features:

120thumbnail1
  1. Capacity and Chemistry:
  2. Applications:
  3. Quality Assurance:
    • Kings prioritizes quality by integrating a robust BMS.
    • With its impressive cycle life, this battery can serve you reliably over the long term.

Remember to follow proper charging practices and safety guidelines to maximize the lifespan of your Kings 120Ah Lithium Battery.

We 100% recommend the kings 120Ah lithium battery for those who do not want to spend all their money on their setup. There are better batteries out there. But 98% aren’t that much better to demand 5 times the price.

VOLTX 100ah Lifepo4 Battery Review.

image

The VoltX 12V 100Ah LiFePO4 Basic Lithium Battery has garnered positive reviews from users. Let’s delve into some feedback:

  1. Richard B. from Metropolitan Adelaide, SA:
    • Describes the battery as “faultless” and praises its bargain price.
    • Used it for over 6 months without issues.
    • Runs two fridges (40L & 60L) for days on end, primarily charged via solar.
    • His brother also purchased one with similar success.
  2. Udo:
    • Calls it “perfect” and great value for the money.
    • Works well for his off-grid setup.
  3. Goona:
    • Labels it a “brilliant battery” that outlasts AGM batteries.
    • Faster charging and significantly lighter.
    • Going strong for almost 3 years.
  4. Keith Wilkinson from South East Queensland, QLD:
    • Replaced a 120AH AGM with this battery.
    • Powers a chest freezer through a 3000W inverter.
    • Reliable even after cloudy days.
  5. Mark:
    • Appreciates its lightweight (half the weight of AGM).
    • Runs fridges and an inverter without issues.
  6. Steve K:
    • Loves it for camping with a 75L fridge.
    • No more messy ice-filled eskies.

SUMMARY
Both of these batteries are basic with no Bluetooth or management options, but they both do what they say. The Kings battery has the advantage of larger capacity, but also with many retail locations you can always get customer service if required. It should be noted that at this price point, The warranty is a mere 12 months.
But for the price, I think its pretty fair, Its likely the batteries will last a few years, but without a warranty. You might be unlucky and get a dud!

Remember that individual experiences may vary, but overall, the VoltX 12V 100Ah LiFePO4 Basic Lithium Battery seems to be a solid choice for various light applications, and I would choose a voltx battery over any Lead Acid battery every day of the week.

For more detailed reviews, you can check out ProductReview.com.au.1

We recommend this battery only when the Kings Battery isn’t available.

Lithium Battery-school
Are second life Lithium Batteries safe?

Are you considering repurposing battery cells and building your own Powerwall or similar Energy storage system?

We are going to take a look at what you must understand before starting a project of this type.

The Chemistry

NMC or NCA

Both of these chemistries are considered dangerous, and they should be avoided, especially in any second life application. And even more importantly in any residential application. There is a real risk of a short circuit, leading to thermal runaway. Both of these chemistries will be extremely difficult to extinguish. And may explode, and burn anything and everything around it down to ashes, Firefighters will not try to extinguish a Lithium Battery fire, as they know they have no option but to wait for the

The capacity loss of LiBs is generally considered to be linear, with end of life typically around 75% to 80% state of health (SoH) and the final end-of-life stage around 50% to 60% SoH. However, at some point a severe and potentially dangerous deterioration can occur and lead to an increased ageing rate. The time at which this occurs, referred to as the “knee,” is difficult to predict. It can occur at a higher SoH than expected, thereby increasing the risk of thermal runaway, internal short circuits, and joule heating, according to the report.

Lithium Iron Phosphate

Although it is possible for LFP to enter thermal runaway, it is very unlikely, and usually only happens when external heat is present, it can also happen when the cell is at 100% SOC and is supplied with a very high current, such as

What is Thermal Runaway?

Lithium Battery-school
Who is EVE Energy?

EVE Energy is a technology-driven company focused on the development of lithium batteries. Their products are widely used in the IoT, EV and ESS. Eve Energy makes prismatic, pouch and cylindrical battery cells. Along with a range of other batteries, including Lithium metal non rechargeable batteries.

Company Website – www.evebattery.com
EVE Energy Co., Ltd. (stock code: 300014)

Household ESS, Utility ESS, and Telecom ESS with products covering cells, modules, battery systems, battery management systems, and other comprehensive solutions

X

Please enter your email address to receive your cart as a PDF.