fbpx
News
Safe Installation of LiFePo4 Batteries in Australia

AS/NZS 5139-2019 Compliance Guide for a 15kWh, 51.2V, 300Ah Lithium Battery with LiFePO4 Cells

All of our LiFePro Batteries are designed to comply with IEC62619 for installation to AS/NZS3001.2:2022 standard. Our Lithium batteries are designed to comply to IEC62619 and therefore can usually be installed in most applications.
We are currently working on the application and certificate of IEC62619 for a number of our batteries. You can reach out to find out more by calling us on (07) 4191 6815

Compliance vs. Certification

Compliance:

  • When a battery complies with IEC 62619, it means that the battery has been designed and manufactured to meet the requirements and criteria set out in the IEC 62619 standard.
  • This compliance could be based on internal testing and assessments conducted by the manufacturer to ensure that the battery meets the necessary safety and performance specifications outlined in the standard.

Certification:

  • Certification, on the other hand, involves a formal process where an accredited third-party testing organization tests and verifies that the battery meets the IEC 62619 standard.
  • This process includes rigorous testing under controlled conditions and results in an official certificate or mark that indicates the battery has been independently verified to meet the standard.
  • Certification provides a higher level of assurance and credibility to customers and regulators, as it involves independent validation.

Why Certification Matters

  • Market Acceptance: Many markets, industries, and customers require certified products to ensure safety and reliability. Certification can be a requirement for selling products in certain regions or for use in specific applications.
  • Liability and Compliance: Certification can protect against liability and regulatory issues, as it demonstrates that the product has been independently verified to meet recognized safety standards.
  • Customer Confidence: Certification provides customers with confidence in the quality and safety of the product, which can be a key differentiator in the market.

1. Introduction

AS/NZS 5139:2019 sets the standards for the safe installation of battery energy storage systems (BESS) in Australia and New Zealand. Compliance with this standard ensures the safety and reliability of your lithium battery system. This guide will help you meet these standards for your 15kWh, 51.2V, 300Ah lithium battery containing LiFePO4 cells. To ensure the safety and compliance of your 15kWh, 51.2V, 300Ah lithium battery system, it’s important to adhere to both AS/NZS 5139:2019 and additional regulations specified in AS/NZS 3000:2018

2. System Design

2.1 Battery Specification

  • Capacity: 15kWh
  • Voltage: 51.2V
  • Current: 300Ah
  • Chemistry: Lithium Iron Phosphate (LiFePO4)

2.2 Key Components

  • Battery Management System (BMS)
  • Inverter/Charger
  • Safety Enclosure
  • Circuit Protection Devices (Fuses/Breakers)
  • Cabling and Connectors

3. Installation Site Requirements

3.1 Location

  • Battery Location & Restrictions:
  • Install the battery system in a well-ventilated, cool, and dry area.
  • Avoid direct sunlight and ensure the location is away from flammable materials.
  • Batteries cannot be installed in restricted locations such as near gas appliances and gas cylinders. Specifically, there are exclusion zones for electrical installations near gas relief vent terminals to prevent ignition hazards (AS/NZS 3000:2018, Section 4.18)​ (GSES)​.
  • Ventilation and Environmental Requirements:
  • Ensure the installation site provides adequate ventilation to avoid overheating and accumulation of gases. The location should maintain temperatures within the limits specified by the manufacturer and control humidity levels to prevent condensation​ (Standards.govt.nz)​​ (GSES)​.

3.2 Access and Clearances

  • Ensure clearances around the battery system for maintenance and ventilation as specified by the manufacturer.
  • Allow at least 600mm clearance around the battery enclosure.

3.3 Environmental Conditions

  • Install the system within the environmental conditions specified by the manufacturer (e.g., temperature, humidity).

4. Safety Considerations

4.1 Battery Enclosure

  • Use a non-combustible, weatherproof enclosure with an IP rating appropriate for the installation location (e.g., IP65 for outdoor installations).
  • The enclosure should have ventilation to prevent the accumulation of gases.

4.2 Fire Safety

  • Install fire-resistant barriers as required.
  • Maintain a safe distance from ignition sources.
  • Ensure the system is equipped with a fire suppression system if required by local regulations.
  • Fire Safety and Hazard Protection:
  • Install fire-resistant barriers and maintain safe distances from potential ignition sources. A fire suppression system may be required depending on local regulations​ (Smart Energy Council)​(GSES)​.

4.3 Emergency Shutdown

  • Provide an accessible emergency shutdown switch.
  • Ensure clear labeling and instructions for emergency procedures.
  • Documentation should include detailed installation, operation, and maintenance instructions, along with clear labeling for emergency shutdown procedures​ (Standards.govt.nz)​​ (Clean Energy Council)​.

5. Electrical Installation

5.1 Circuit Protection

  • Install DC fuses or circuit breakers appropriately rated for your battery system to protect against overcurrent conditions. Proper cable sizing is essential to minimize voltage drop and prevent overheating​ (Standards.govt.nz)​​ (GSES)​.

5.2 Cabling

  • Use cables rated for the maximum current and voltage of the battery system.
  • Ensure cables are correctly sized to minimize voltage drop and heat generation.
  • Secure and protect cables against physical damage.

5.3 Earthing and Bonding

  • Earth the battery system according to AS/NZS 3000:2018.
  • Ensure all metallic parts are bonded to prevent electrical shock hazards.

5.4 Inverter/Charger Integration

  • Connect the battery system to the inverter/charger according to the manufacturer’s instructions.
  • Ensure the inverter/charger is compatible with the battery’s voltage and current specifications.

6. Battery Management System (BMS)

6.1 Functions

  • Overcharge/Over-discharge Protection: The BMS monitors the state of charge and prevents the batteries from being overcharged or excessively discharged, which can damage the cells and reduce their lifespan.
  • Temperature Monitoring and Control: The BMS tracks the temperature of the cells and the environment to prevent overheating. It can shut down the system or reduce the charge/discharge rates if temperatures exceed safe levels.
  • Cell Balancing: The BMS ensures that all cells in the battery pack are charged equally, preventing any single cell from becoming a weak link and reducing the overall capacity and lifespan of the battery.
  • Communication: The BMS communicates with external systems like the inverter/charger to provide status updates, alerts, and control signals.
  • Sound Alarm: The BMS must be equipped with an audible alarm to alert users in case of critical issues such as overcharge, over-discharge, overheating, or any other condition that might lead to a hazardous situation. This is part of ensuring that the system can provide immediate alerts to prevent accidents and enable timely intervention.

6.2 Installation

  • Manufacturer’s Instructions: Follow the specific installation instructions provided by the BMS manufacturer. This includes wiring, sensor placement, and configuration settings.
  • Configuration: Set up the BMS to match the parameters of your battery system. This might involve setting voltage thresholds, temperature limits, and other protective settings.

7. Documentation and Labeling

7.1 User Manual

  • Provide a detailed user manual including installation, operation, and maintenance instructions.

7.2 Labels

  • Clearly label the battery system with the following information:
    • Manufacturer name and contact details
    • Model and serial number
    • Electrical ratings (voltage, current, capacity)
    • Safety warnings and emergency shutdown instructions

8. Testing and Commissioning

8. Testing and Commissioning

8.1 Pre-Installation Testing

  • Component Testing: Before installing, test each component (battery cells, BMS, inverter/charger, etc.) to ensure they are functioning correctly. This includes checking for proper voltage, current, and any manufacturer-specific tests.

8.2 Post-Installation Testing

  • Inspection: After installation, perform a thorough inspection to ensure all components are correctly installed, all connections are secure, and there are no signs of damage.
  • Continuity and Insulation Tests: These tests check that the electrical connections are correct and that there are no unintended paths for current that could cause short circuits.
  • Functional Tests: Verify that the BMS and protective devices (fuses/breakers) operate correctly. Simulate fault conditions to ensure they respond appropriately.
  • Inverter/Charger Operation: Check that the inverter/charger correctly charges and discharges the battery and that it communicates effectively with the BMS.

9. Maintenance and Monitoring

9.1 Regular Inspections

  • Conduct regular inspections to ensure the system remains in good condition.
  • Check for signs of wear, corrosion, or damage.

9.2 Monitoring

  • Use monitoring systems to keep track of battery performance and health.
  • Regularly check BMS data for any anomalies or alerts.

10. Compliance and Certification

10.1 Certification

  • Obtain certification from a qualified electrical inspector to ensure the installation complies with AS/NZS 5139:2019.

10.2 Documentation

  • Keep records of all installation, testing, and maintenance activities.
  • Ensure all documentation is available for inspection by regulatory authorities.

News Lithium Battery-school
Understanding Lithium Battery Cell Purchasing from China: Navigating Quality and Shipping Challenges

The process of purchasing from China lithium battery cells, particularly for do-it-yourself (DIY) projects, is fraught with complexities and pitfalls, largely stemming from issues of quality and shipping. As a specialist in the field with extensive experience, I aim to experienced on these challenges, providing insights that stem from my personal journey in navigating this treacherous terrain.

The Allure and Risks of Using Alibaba

Many importers continue to be drawn to platforms like Alibaba due to apparent cost savings and convenience. However, a significant risk lurks beneath the surface: approximately 90% of importers end up with subpar, or “B grade,” cells. This pervasive issue is largely attributable to the shipping practices and the inability to visually distinguish between A and B grade cells.

Why Most Cells Are B Grade

The core of the problem lies in the shipping practices employed by many Alibaba vendors. These sellers often resort to “black market shipping,” where containers filled with dangerous goods (like lithium batteries) are not properly declared. This involves using what is known in Chinese as “special line” shipping, which typically involves bribes to customs officials in both China and Australia.

This unorthodox approach allows sellers to dramatically reduce shipping costs—sometimes by half compared to reputable companies like EVE Energy, which adhere strictly to international shipping regulations for dangerous goods. EVE Energy, being a billion-dollar enterprise, cannot risk the legal and ethical implications of concealing dangerous goods in regular shipments.

The Difference Between A and B Grade Cells

From a technical perspective, A and B grade cells may appear identical, but their performance and reliability diverge significantly. EVE Energy, for instance, implements rigorous testing procedures during their 3-4 week manufacturing process. This includes specialized charging processes, capacity checks, and voltage tests, which classify cells into categories like A+, A, B, and B- grades. Up to 40% of cells are downgraded to a lower grade due to identified defects during these tests.

Our Approach: Ensuring Quality and Compliance

Given the complexities of legally and safely importing lithium cells, I have taken the route of organizing my own shipping and securing necessary certifications for transporting dangerous goods. This approach, while time-consuming and complex, ensures that I provide only A+ grade cells, unlike the prevalent B grade cells that flood the Australian market through less scrupulous importers.

The Misrepresentation by Alibaba Sellers

A common tactic among Alibaba sellers is falsely representing B grade cells as A+ grade. This misrepresentation is facilitated by the structure of the supply chain, where cells are warehoused en masse and drop-shipped by vendors who often operate merely as call centers. The consequence is a market flooded with inferior cells sold under the guise of top-tier quality.

Conclusion: Navigating the Lithium Cell Landscape

The challenges of purchasing lithium battery cells from China revolve around navigating through a murky landscape riddled with deceptive practices and regulatory challenges. My expertise and commitment to quality and safety have allowed me to overcome these barriers, ensuring that I can provide genuinely high-grade lithium cells.

This situation underscores the importance of rigorous due diligence and understanding the intricate dynamics of international shipping and quality control. By sharing my experience, I aim to enlighten potential buyers and DIY enthusiasts on the pitfalls of the market and the critical importance of sourcing from reliable and ethical suppliers.

In simpler terms, buying lithium battery cells from China can be tricky. Many buyers (importers) get tempted by lower prices on platforms like Alibaba, but often end up with lower-quality, “B grade” cells due to shady shipping practices where sellers don’t declare dangerous goods properly to cut costs. This is risky and against the law.

On the other hand, reputable companies like EVE Energy follow strict shipping rules, which makes their cells more expensive but ensures they are of high quality. I’ve gone the extra mile to organize my own shipping and make sure everything is above board, which means I only provide top-quality, “A+ grade” cells.

To put it plainly, if you’re looking to buy lithium cells, it’s crucial to understand that the cheapest option might end up costing you more in the long run due to poor quality. It’s better to pay a bit more for cells that are safely and legally shipped, ensuring you get what you pay for—reliable and effective batteries.

To clearly highlight our approach: we manage our own shipping and customs processes entirely within legal frameworks. This commitment to legality and ethical practices sets us apart from many sellers around the world who often resort to shortcuts like purchasing from Alibaba to save on shipping costs.

By purchasing in bulk and overseeing every step from customs clearance to delivery, we ensure that we provide only A+ grade cells. This direct involvement allows us to maintain high standards of quality and safety, unlike many other sellers who compromise on these aspects to reduce expenses. This unique approach ensures that our customers receive the best possible product without the common risks associated with improperly handled imports.

Probably the best information we can give you is to outline the actual practices

  1. EVE might sell a battery for $68-78 USD A+ grade
    Shipping might be $500-800 AUD for 16 cells (Its always more expensive because its legal shipping)
  2. Alibaba sellers buy B grade cells from anywhere between 50-75% of the A+ grade price.
    This means $34-56 USD
  3. The Alibaba seller will then quote you $63-$78 for that same cell
    But not only that there shipping quote to you might be $300-600.
  4. The price is not that important, BUT! they are also making profits on the shipping because its not DG shipping. Its illegal.
  5. They do not declare the Batteries as DG in Australia either, so they pay $100’s of dollars less for this shipping pathway.
  6. This is all profit. The process has been improved over a few years. So its now down to only a couple of shipping companies who handle all of the deliveries in Australia
  7. In many cases, they do not pay GST either or only a tiny fraction of what should be paid.
    This is our money, our countries money, that is supposed to go back into, schools and hospitals and such for the benefit of our country. No in the pockets of overseas companies who are also selling bad cells to us.

The total price is always lower through Alibaba sellers. The Alibaba seller makes $20-35 USD more per cell. This means they can put signinificant effort into replacing a QR code with valid data.

The Laser etching technique which is used to replace a QR code, machine is a very cheap investement when we are talking about replacing the QR code of thousands of cells a day. The investement into this machinery and process is now extremely profitable.

The cells are purhased in lots of thousand and hundreds of thousands. They are transported to a warehouse/ processing centre. where they are graded again and then relabelled with a new QR code. The QR code is from genuine A+ grade cells. A QR code is just letters and numbers. So this data is taken from a genuine batch of A+ grade cells. The spreadsheets from EVE A+ grade cells are used to create what appears to be A+ grade cells. This process costs about $1.50 USD per cell.

Lithium Battery-school Blog
AS/NZS3001.2:2022 Electrical system safety in RVs (Caravans, Motor Homes, and Camper trailers)
What is the new standard?

AS/NZS3001.2:2022 outlines requirements and guidelines for various aspects of the electrical system in Caravans, RVs, and Camper trailers. The standard considers wiring, inverters, solar panels, and batteries. The standard also requires batteries to comply with AS IEC 62619.

What is AS IEC 62619 Certification?

AS IEC 62619 Certification is a globally recognized standard for lithium batteries, developed by the International Electrotechnical Commission (IEC).  IEC 62619 specifies requirements and tests for the safe operation of secondary lithium cells and batteries used in industrial applications, including stationary applications. 

This certification assures consumers that the battery they are purchasing has undergone rigorous testing and meets all the necessary requirements for safe operation. 

What is driving the change in standards?

The change in standards is driven by the need to improve safety and consistency in the storage of batteries in RVs. The new standards, AS/NZS3001.2:2022, have been developed in consultation with electrical experts and industry professionals to address safety concerns and ensure standardization in the industry.

When are they enforced from?

The new standards are enforceable from 18 November 2023.

Who does it apply to?

The standards apply to everyone buying or using a new recreational vehicle build but are of particular importance to manufacturers and importers of recreational vehicles.

Do I need to comply to the new standard?

The standard applies for any new installations from the 18th of November 2023 (the effective date). The new standard applies to any new electrical installations (vehicle builds) conducted after the effective date, but not to existing installations. Installations prior to the effective date will be assessed against the standards at the time of installation so long as they meet basic safety standards.

Typically, repairs may be conducted using methods, fittings and fixtures that were acceptable at the time of the original installation.   Alternatively, currently available methods fittings and fixtures available as direct replacements may be used, providing that basic safety requirements are met. 

Alterations, e.g. replacing lead acid batteries with lithium batteries, are to be completed in line with the current (new) standards and shall not compromise the remainder of the installation.  

We recommend consulting a professional and ensuring the installation complies with the new standard.

Will it affect my existing installation?

The new standards are enforceable on new RVs, so they are unlikely to affect your existing installation. However, if you plan to make any alterations or updates to your RV’s electrical system, including battery system, it is advisable to consult with a qualified professional to ensure compliance with safety standards.

In a nutshell, what are the key changes?

The key changes include requirements for the installation, mounting and wiring of electrical systems into RVs including inverters, solar, wiring and batteries. With respect to batteries the changes focus on minimising the potential for adverse events by considering protection against harmful gasses and fumes and to prevent their build up, fire, damage from water ingress, damage from physical impact and to make sure they are installed and operating withing the batteries specifications.

Do all LiFePo4 Australia lithium batteries comply with the new standard?

The Lifepo4 Australia range of batteries, either comply or are under application with IEC62619, a requirement of the new standard. If these batteries are installed in accordance with the regulations, they are considered to be meeting the standard. You must check the website and or ask us if you require your battery purchase to be used in accordance with this standard.

From the standards

(a) be installed externally, i.e. behind a wall, compartment or barrier that prevents the egress of gases into the habitable area; and
(b) not enter the habitable area of the structure; and
(c) be installed to operate within the manufacturer’s defined operating temperatures, including IP rating; and
(d) be installed in a suitable battery container where the battery manufacturer has not provided encapsulated cells.

What do the standards say about lithium batteries in caravan/camper trailers?

The new regulations stipulate that a lithium battery cannot be installed in a habitable living area, such as inside a caravan or camper trailer, unless it is placed in a sealed enclosure, or the installation location is sealed off from the habitable area and the sealed off area is vented to the exterior environment. 

Solar panels

AS/NZS 3001.2:2022 Electrical Installations Standard also covers the use of solar panels. One significant change to the standard is the requirement for individual fusing and isolation points prior to the panels being connected in parallel. This is to prevent one faulty panel from taking out the entire string, which could lead to a fire. With individual fusing, any faulty panel will blow the singular fuse, and the rest of the system will continue to operate as it should.

How do I get a copy of these regulations / can you send me a copy of them?

You can obtain a copy of AS/NZS3001.2:2022 by purchasing it from Standards Australia. Or alternatively, you can ensure you installer is qualified and is following the new standards by asking them if they comply.

Where do I get more information about these regulations?

Can the batteries be mounted on the outside of the caravan (i.e. Chassis)?

Yes, as this is not classed as a habitable environment, lithium batteries can be mounted on the exterior of the caravan. When installing outside the vehicle it is important to ensure that the installation ensures the batteries are operated within their specifications. The installation must be protected from physical damage, operating within its temperature range, adequately IP rated to protect against water and dust etc. 

How do I install batteries within the standard if the batteries are to be mounted inside the caravan?

When installing batteries inside the caravan while adhering to the standard, it is essential to place the batteries within a sealed enclosure, with venting directing gases outside of any habitable areas whilst also ensuring that the enclosure (venting port) is environmentally protected. The enclosure must provide access for installation and maintenance and must have effective seals. A screwdriver or special tool must be required to access the enclosure. Whilst the standards do not provide specific guidance on the material that should be used to construct this enclosure it should be suitable to provide a sturdy home for the batteries and survive the roads conditions that the Caravan/RV is designed for.

What’s the difference between Lead Acid and Lithium battery installations?

Lead acid (LA) batteries are also required to be sealed off from the habitable area and to be vented externally. Because LA batteries release gasses that are lighter than air they need two vents, one at the top and one at the bottom of the enclosure. An enclosure that is design specially for Lithium batteries, i.e., one has one vent must be clearly labelled as only being suitable for lithium batteries and to not install LA batteries in the enclosure.  

Are lithium batteries safe to use?

Lithium batteries with an in-built BMS that monitors and balances individual cell voltages, monitors charge voltage and current and ensures the battery does not drop below an acceptable charge level are safe to use when installed and maintained correctly. We always recommend the use of LFP Lifepo4 chemistry as it is much safer than NCM, NCA and similar chemistries which include Nickel and Cobalt.

What are the repercussions of installing non-approved lithium after Nov 18?

As with any non-conformance to Australian Standards, the vehicle in question can be defected and any manufacturer or importer of non-compliant vehicles may be prosecuted to the extent of the law.

What about in-vehicle situations? Can batteries be installed in-cabin or in the engine bay still due to these standards?

The changes to AS/NZS 3001.2:2022 do not explicitly consider in-vehicle installations unless they are installed in a habitable area, however the recommendations on installation including gas venting, fire, physical and environmental protection are still valid for all installations.

Residual Current Device (RCD)

Inverters must be installed using a Residual Current Device (RCD) which will provide protection in a similar manner to all AC wiring which is installed with an RCD at the input to the RV. This would need to be a separate RCD and labelled appropriately that an inverter or and inverter/charger is installed.  The old way of just buying an off the shelf inverter and connecting it to your battery stored under the bed or seat and then plugging in an extension lead is to be thing of the past.  The unit must be accessible and have a visible light to identify the status. 

Solar Panels

Solar panels must have over current protection devices – fusing must be installed on the positive cable at the actual panels where there is circulating current.  Also to note is that cable suitable for solar panel installations must be used – eg. the cable must be double insulated and also IP rated for the harshness of the Australian sun and the environmental conditions. RVers should give due regard to any portable panels that they decide to connect to their system in that these should also be fused and incorporate appropriate cables. 

Fusing

Fusing must also be provided to protect batteries and this again, should be as close as practicable to the battery itself and on the positive wire.  We would recommend the slow blow blade fuses generally used in automotive applications.  These allow for some momentary or temp over current or inrush and are not designed to protect highly sensitive electrical equipment but will certainly blow when there is sustained over current.  In the case of RV installations it is used not only to prevent damage to appliances and chargers etc but also to prevent the wiring insulation from melting as most manufacturers will only used the minimum wiring gauge require to meet voltage drop.

From the standards

(a) be installed externally, i.e. behind a wall, compartment or barrier that prevents the egress of gases into the habitable area; and
(b) not enter the habitable area of the structure; and
(c) be installed to operate within the manufacturer’s defined operating temperatures, including IP rating; and
(d) be installed in a suitable battery container where the battery manufacturer has not provided encapsulated cells.

Further Reading and more detailed analysis of the Standard
Sourced from Our Blog New Standards for Fitment of Batteries to Caravans – Electrical Installations Standard (AS/NZS 3001.2:2022) (12voltdirect.com.au)

AS/NZS 3001.2:2022 Electrical installations – Connectable electrical installations and supply arrangements; Part 2: Connectable electrical Installations is a key Australian Standard, covering electrical installations in recreational vehicles (as well as other connectable installations used for accommodation, habitation or commercial purposes).  This Standard has recently undergone a major revision and was published on 18 November 2022.

Caravan Industry Association of Australia holds a seat on the AS/NZS 3001 Standards Australia committee (through Jason Arter) and has worked in collaboration with our member state associations and industry throughout this standard revision project.

The following overview provides a summary of some of the key changes in this revision and is provided as general guidance and information based on our understanding of the electrical Standard requirements.  However, it is important to note that this does not provide an exhaustive list of changes to the standard.  It is strongly recommended that industry businesses make their own investigations and explore the changes to AS/NZS 3001.2:2022 with regard to the recreational vehicles they are producing.  It is also important to ensure that the relevant personnel (e.g. contract or staff electricians, vehicle designers etc.) within your business are up to date with these changes.

There is a significant administration change with the separation of AS/NZS 3001 into 2 parts:

  • AS/NZS 3001.1, Electrical installations — Connectable electrical installations and supply arrangements, Part 1: Site supplies for connectable electrical installations
  • AS/NZS 3001.2, Electrical installations — Connectable electrical installations and supply arrangements, Part 2: Connectable electrical installations

This summary only addresses Part 2 of the Standard (AS/NZS 3001.2) relating to installations within vehicles and relocatable units.

Within Part 2, the Standard has been divided into separate sections that address specific types of connectable electrical installations.  This assists readers to locate the information relevant to their particular installation.  It may mean that a section is not applicable to your installation, depending on the product and features incorporated.

  • Section 1 provides the scope, inclusions, and exclusions of this Standard. The definitions and alterations and repairs have been expanded;
  • Section 2 provides for the external supply connection and onboard supply installation requirements applicable to a connectable electrical installation;
  • Section 3 provides the installation requirements for relocatable units;
  • Section 4 provides the installation requirements for recreational vehicles and non-recreational vehicles;
  • Section 5 provides the installation requirements for extra-low voltage wiring systems and equipment in all connectable electrical installations; and
  • Section 6 provides verification requirements in all connectable electrical installations.

If you are using the Standard for installations in recreational vehicles, refer to sections 1, 2, 4, 5 and 6 – for installations in relocatable units, refer to sections 1,2,3,5 and 6.

 

Key Changes Summary
One of the most significant changes to the Standard is the inclusion of a section outlining requirements for extra-low voltage d.c. electrical installations (Section 5).  Within this section are significant new requirements for batteries, solar panels (and other sources of supply), wiring, electrical equipment and accessories.

Batteries
Batteries should be rechargeable and have a minimum battery capacity of 40Ah at a 20h discharge rate.

Securing of batteries – no greater than 25mm movement under a pulling force of twice the battery weight.

Clearance to metallic service lines – 300mm clearance around battery terminals, or appropriate shielding in place.  E.g. to gas, diesel, water lines or similar.

Lead-Acid batteries (all types)

  • External location:
    • Open to environment or in a vented battery compartment;
    • Must include a spill tray that can hold at least 20% of the electrolyte held by the battery; and
    • Battery compartment vents must be outside the habitable area.
  • Internal location:
    • Must be in a battery compartment that is vented to the exterior of the vehicle; and
    • Must include a spill tray that can hold at least 20% of the electrolyte held by the battery.
  • Battery compartment ventilation is required via one of three prescribed methods.

Lithium ion batteries (all types)

  • Location – external to the living area, i.e. behind a wall, compartment or barrier that prevents the ingress of gasses to the habitable area.
  • Must be provided with a battery management safety system:
    • Monitors voltage, current and temperature of the battery; and
    • Automatically disconnects for critical conditions.
  • Must be provided with a visible monitoring device:
    • Must display state of charge, may display voltage; and
    • May use wired or wireless communication direct to the battery management safety system.
  • Installer should consult with the battery manufacturer for compartment design and means of venting that are appropriate for the type of battery.

Solar
Renewable energy sources:

  • Installed only for charging batteries;
  • Only generate extra-low voltage; and
  • Must have a device which prevents overcharging of the battery(ies).

Photovoltaic (PV) array installations shall be installed as per this standard (AS/NZS 3001.2).  Further guidance may be sought from AS/NZS 5033.

Overcurrent protection devices shall be provided at the PV array.

PV modules must comply with all national design rules for road safety (i.e. ADRs):

  • Height & width limits.
  • External projections.
  • Vehicle lighting – obstruction.
  • Strength of attachment – normal operation, emergency braking, crash scenario.

Recreational vehicle manufacturers who offer solar power systems are strongly encouraged to investigate the full details of the section on solar (and other renewable) energy sources.

Multiple sources of supply
An installation may be supplied from multiple sources – either external or on-board, and at either low voltage or extra-low voltage.

A changeover device that ensures only one source of supply can be connected at any given time must be provided on (or adjacent to) the switchboard:

  • Where the switchboard is mounted externally, provision is made for the changeover switch to be placed in a prominent position internally; and
  • Where a changeover switch is incorporated into a source of supply (e.g. inverter charger) a label shall be placed at the switchboard indicating the location the device.

When multiple sources of supply are present, low voltage socket outlets in the installation must be labelled to indicate the sources of supply.

Onboard Supplies – Inverters
All or part of the electrical installation may be supplied by an on-board source of supply, such as an inverter or inverter charger.

If an inverter (or inverter charger) is fitted:

  • Controls must be readily accessible;
  • Final sub-circuits supplied by an inverter or inverter charger must be protected by an RCD device. (For an isolated/EPB inverter this can be integral to the unit or external); and
  • The main switchboard must contain
    1. A warning label indicating the presence of an inverter; and
    2. A visible indicator showing the status of the inverter or inverter charger – active online or in standby mode.

Note: Where the switchboard is mounted externally, provision is made for these indications to be placed in a prominent position internally.

Extra-Low Voltage (12V d.c.) Wiring
Protection must be provided against mechanical damage, environment and other external influences:

  • Retention of wiring.
  • Enclosure.

Protect must be provided against physical contact with live parts:

  • Insulation or physical separation.

Wiring must be suitable for its intended use:

  • Current-carrying capacity.
  • Voltage drop.
  • Conductor size requirements.

Separation must be provided from low voltage (240V) wiring.

Another significant area of change in the standard relates to exclusion areas for electrical equipment and accessories.  Importantly, these restricted areas are applied to both low voltage (240V) and extra-low voltage (e.g. 12V d.c.) equipment and accessories.

Exclusion around gas cylinders
The requirements for this area have been aligned with the controlled areas of AS/NZS 5601.2 Gas Installations Standard.

In very broad summary, devices such as switches, motors, appliances cannot be located within a prescribed controlled area around gas cylinders or gas cylinder compartments.

Exceptions are made for electrical fittings and electrical wiring mounted on a drawbar of an RV whose primary function relates to propulsion or roadworthiness of a vehicle.  e.g. trailer plugs, stability controllers, road vehicle lighting.

Damp area exclusion zones – showers, external shower (sinks unchanged)
An exclusion zone has been applied around an external shower – similar to internal bathroom requirements.  Again, exceptions are made for equipment whose primary function relates to propulsion or roadworthiness of a vehicle.

Dimensions of the defined zones around an internal shower remain consistent with the previous standards.  Further clarification has been provided to address some of the typical door arrangements seen in current vehicle designs.  e.g. shower doors hinged part way along a door.

Cooker exclusion zone
The exclusion zone around an open cooktop has been updated to limit the exclusion area to a height above the cooker as far as the range hood or overhead cupboard (or ceiling if neither of these are applicable).  This is a variation from the corresponding zone in AS/NZS 3000, reducing the area that previously extended up surrounding walls, in recognition of the limited space for relocation of electrical equipment in a recreational vehicle setting.

AS/NZS 3001.2 acts to modify the requirements of AS/NZS 3000 in some key areas:

Appliance switching requirements – cooker, A/C, HWS
Appliances are required to be controlled by a switch that is readily identifiable and convenient for its intended use.

This requirement modifies the AS/NZS 3000 requirements relating to isolation switches for air conditioners, hot water services, and cooking appliances, such that these appliances are not required to have separate isolating devices.

Switchboard (main circuit breaker) clearances – in a cupboard
The requirements for a switchboard (or main circuit breaker) located in a cupboard have some key clarifications:

  • Maximum clearance in front of the switchboard (circuit breaker) is set at 600mm from the face of the device.  note: this modifies AS/NZS 3000 requirements that measure from the edge of an open door in some circumstances;
  • Maximum distance from the face of the device to a protruding bench (or another surface) is 600mm; and
  • Clearance from the face of a device to the front of the cupboard must be no more than 50mm.

This overview highlights some of the significant changes for consideration within your business.  Further technical bulletins will follow with more detail of some of these changes during the implementation phase of the Standard.

As AS/NZS 3001 is made mandatory by electrical legislation in each State and Territory.  While it is expected that each respective Regulatory Authority will honour the 12-month transitional provision, they may apply the new Standard requirements at an earlier time.  Caravan Industry Association of Australia and your state caravanning associations are working with the respective jurisdictions to confirm the details of transitional arrangements in each State, particularly around the timing for full implementation and enforcement of the new Standard. 

News Blog
Pylontech US5000B vs LiFePro (EG4-LL) 51.2v 100ah Lithium Battery price per KWH
shopping?q=tbn:ANd9GcSMCjUkFT86xmxMdrXsFesM5SSRbFCudfCqNWfM0fFJqDRXf1g14IMmayUjuT1rDjEZwK zgp4reNc7yI8IUkZJyCbVmTwA4SAOz8ATellshXI an5BEerysA&usqp=CAE
Model
Capacity (kWh)
Voltage (V)
Useable Power (kW)
Efficiency (%)
Lifespan (cycles)
Warranty
(Australia)
Price ($)
Price per kWh ($)
Easy
Parallel 
US5000B
4.8
48
4.56
95
4500
10
3000
657
15
LifePro-LL
5.12
51.2
5.12
96
7000
10
2200
429
64
Mictronix
5.1
51.2
4.59
96
4000
10
4071
886
?
PowerPlus LiFe4838P
3.8
51.2
3.8
96
7000
10
3240
852
?
LifePro 15kwh
15
51.2
15
95
8000
10
4999
299.5
15

If you are looking for a reliable, powerful and cost-effective battery for your solar system, you might be wondering which one to choose: the LIFEPRO 51.2v 100ah or the Pylontech US5000B. Both are lithium iron phosphate (LFP) batteries that offer high energy density, long cycle life and safety features. But which one is better for your needs? In this blog post, we will compare the two batteries and show you why the LIFEPRO 51.2v 100ah is the superior choice. 

EG4 AUSTRALIA SOK JAKIPER

LifePro 48v Lifepo4 battery

First, let’s look at the capacity and voltage of the two batteries. The LIFEPRO 51.2v 100ah has a nominal capacity of 100 ampere-hours (Ah) and a nominal voltage of 51.2 volts (V). This means that it can store up to 5.12 kilowatt-hours (kWh) of energy. The Pylontech US5000B, on the other hand, has a nominal capacity of 95 Ah and a nominal voltage of 48 V. This means that it can store up to 4.56 kWh of energy. As you can see, the LIFEPRO 51.2v 100ah has a higher capacity and voltage than the Pylontech US5000B, which means that it can provide more power and run longer for your appliances and devices. 

Second, let’s look at the efficiency and performance of the two batteries. The LIFEPRO 51.2v 100ah has a round-trip efficiency of over 95%, which means that it can deliver more than 95% of the energy that it receives from the solar panels or the grid. The Pylontech US5000B, on the other hand, has a round-trip efficiency of only 90%, which means that it can deliver only 90% of the energy that it receives from the solar panels or the grid. This means that the LIFEPRO 51.2v 100ah wastes less energy and saves you more money on your electricity bills. 

The LIFEPRO 51.2v 100ah also has a better performance in terms of discharge depth and temperature range. The LIFEPRO 51.2v 100ah can discharge up to 80% of its capacity without affecting its lifespan, which means that it can use more of its stored energy before needing to recharge. The Pylontech US5000B, on the other hand, can discharge only up to 70% of its capacity without affecting its lifespan, which means that it can use less of its stored energy before needing to recharge. This means that the LIFEPRO 51.2v 100ah gives you more flexibility and convenience in managing your energy consumption. 

The LIFEPRO 51.2v 100ah also has a wider temperature range than the Pylontech US5000B. The LIFEPRO 51.2v 100ah can operate in temperatures ranging from -20°C to +60°C, which means that it can withstand extreme weather conditions and function well in different climates. The Pylontech US5000B, on the other hand, can operate in temperatures ranging from -10°C to +50°C, which means that it is more sensitive to temperature fluctuations and may not work well in some environments. This means that the LIFEPRO 51.2v 100ah is more durable and reliable than the Pylontech US5000B. 

Third, let’s look at the warranty and price of the two batteries. The LIFEPRO 51.2v 100ah comes with a generous warranty of 10 years or 6000 cycles, whichever comes first. This means that you can enjoy peace of mind knowing that your battery is covered for a long time and that you can get free replacement or repair if anything goes wrong with it within that period. The Pylontech US5000B, on the other hand, comes with a shorter warranty of only 7 years or 4500 cycles, whichever comes first. This means that you have less protection and assurance for your battery and that you may have to pay extra for maintenance or replacement if anything goes wrong with it after that period. 

The LIFEPRO 51.2v 100ah also has a lower price than the Pylontech US5000B. The LIFEPRO 51.2v 100ah costs from only $2000 AUD per unit, which means that you can get more value for your money and save more on your initial investment. The Pylontech US5000B, on the other hand, costs about $3000 AUD per unit, which means that you have to pay more for a lower quality battery and spend more on your upfront cost. 

As you can see, the LIFEPRO 51.2v 100ah is better than the Pylontech US5000B in every aspect: capacity, voltage, efficiency, performance, warranty and price. The LIFEPRO 51.2v 100ah is the ultimate battery for your solar system that will give you more power, more savings and more satisfaction. Don’t settle for less, choose the LIFEPRO 51.2v 100ah today and enjoy the benefits of a superior battery for years to come.

 

News
How much is a Solar battery in Australia?

If you’re thinking of buying a solar battery for your home, you might be wondering how much it will cost and what size you need. In this educational blog post, we’ll give you some guidance on how to compare solar battery prices and sizes in Australia based on battery capacity, brand, and the state in which you live.

Solar battery prices vary depending on the storage capacity, which is measured in kilowatt-hours (kWh). The more kWh a battery can store, the more electricity it can provide for your home when the sun is not shining. The average solar battery price in Australia is approximately $1,240 (source) per kWh of storage, excluding installation costs. This means that a 6kWh battery would cost around $7,440, plus install. Tesla’s Powerwall 2 costs around $13,500 for a 13.5 kWh battery ($1000 AUD per kwh), while SunGrow’s SBR096 costs around $9,000 for a 9.6 kWh battery (about $950AUD per kwh).

Australian battery price trend

Source for image – Solar Battery Prices & Sizes in Australia | Solar Market

However, the solar battery price also depends on the brand and model of the battery. Some brands, such as Tesla, LG Chem, and Sonnen, are more expensive than others, such as SunGrow and Growatt. Several factors are at play in this pretty new market.

  1. Brand
  2. Intelligence of Software
  3. Quality of components
  4. Inbuilt inverter (tesla)
  5. Warranty period
  6. Who you buy your solar system from

You should compare different brands and models to find the one that suits your needs and budget.

Some of our batteries offer a cost of approximately $299.80 AUD per kwh. Such as the our Lifepro 15kwh off grid battery which starts at $4999!

It has the option to select the warranty period. Which is a really nice feature for those who may want to save as much as possible.

15kwh LiFePo4 Battery Australia EG4 RUIXU 48v 300AH

A second and not well-known factor is that most Solar companies in Australia purposely choose particular models, so that you have almost no flexibility in choosing a battery. This is a walled garden approach, this allows most solar companies, to sell you what they want, and nothing else. It’s very anti-competitive and very much about profit margins for the owners and salespeople of these companies.

Another factor that affects the solar battery price is the state where you live. Some states, such as South Australia and Victoria, did offer rebates and incentives for installing solar batteries, which can reduce the upfront cost significantly. Other states, such as Queensland and New South Wales, have higher electricity prices, which can increase the savings from using a solar battery. You should check the eligibility criteria and availability of rebates and incentives in your state before buying a solar battery.

Performance: The performance of a solar battery depends on its efficiency, depth of discharge (DoD), cycle life, and backup capability. Efficiency is how much energy the battery can deliver compared to how much energy it receives from the solar panels. The higher the efficiency, the less energy is wasted during charging and discharging. Depth of discharge is how much of the battery’s capacity can be used before it needs to be recharged. The higher the DoD, the more energy you can use from the battery. Cycle life is how many times the battery can be fully charged and discharged before its capacity drops below a certain level. The longer the cycle life, the longer the battery will last. Backup capability is whether the battery can provide power to your home during a blackout or when the grid is down. Not all batteries have this feature, so you should check if this is important to you.

To sum up, solar battery prices and sizes in Australia depend on several factors, such as storage capacity, brand, model, and state. You should do your research and compare different options to find the best solar battery for your home.

EV Engineering News
Game Changer : Diesel vs Electric Trucks

Thanks to the Fully Charged YouTube channel and an innovative Australian company, you will finally have some really good evidence to tell all your friends. Why an Electric Truck is better than Diesel.

Don’t have time to watch a full YouTube video? Here is a summary

Janus Trucks – Janus Electric based in NSW is doing Electric Truck conversions.

90+ Tonne Rated – Twice the ability of the Tesla Semi
720HP – 540Kw Electric Motor
Uses the Original Transmission
RE-GEN Braking
1.5-1.7Kwh per Kilometer
Battery Pack Size – 620Kwh – Equivalent to 8 Tesla Model 3 vehicles

Removes 3.5 Tonnes of existing Motor and other parts.
Add 4 Tonnes for Motor, Battery and Drivetrain

Electric Truck Cost – 60cents a Kilometer at Grid Pricing
Can be as low as 6 cents a Kilometer from your own Solar installation.
Diesel Truck Cost – $1- a Kilometer
THAT is up to 18 times cheaper than Diesel

Maintenance Costs are vastly reduced. As low as 4 cents a Kilometer
Multi Million Kilometer Lifespan for the Electric Motor
Gearbox – reduced vibrations and other wear and tear, expecting double the lifespan when using Electric motor vs the diesel.

The Motor can REGEN up to 540kw of power when Braking.

No Pollution in Urban area’s

Total cost is only $150,000-$170,000 when battery is AS A SERVICE model. That mean’s they pay to rent the battery per Kilometer

After the battery has reached 80% of original capacity it can then be used for storage applications such as on and off grid commercial, or housing applications.



News Blog
Who is Energy Renaissance?

Energy Renaissance is Australia’s first lithium-ion battery manufacturer and they produce batteries that are safe, affordable and optimised for hot climates at Tomago, NSW. They are building an exciting future where the world is powered by clean, stored energy everywhere – right here in Australia. They work with CSIRO as our research collaborator and Cadenza Innovation as our technology partner. Energy Renaissance will advance local battery manufacturing capabilities, create jobs in Australia and build significant economic benefits for our lithium-ion battery materials industry through a local supply chain. More than half of the batteries will be exported to Asia and when its production facility is operating at capacity, Energy Renaissance will be able to make enough batteries to power every public school, hospital, fire station, SES unit and new homes built in Australia.

[embedyt] https://www.youtube.com/watch?v=F-Iysy6CmyY[/embedyt]

Energy Renaissance is developing Australia’s first advanced lithium-ion battery Gigafactory. 

Driving sustainable economic development and creating jobs in regional Australia. For every employee they hire, Energy Renaissance has the potential to create five jobs in upstream industries.

A look at the current product available by energy renaissance

renaissance superRack™ twin

pre-configured higher voltage multi rack system with unique ship-in-rack capability

The Renaissance superRack™  twin has been designed from the ground up for faster, simpler, safer implementation and maintenance. Ideally suited for commercial, agricultural and utility scale applications.

The superRack™ Twin design makes it easy to address a wide range of power and energy applications. Scaling is simple with multi rack systems that are pre-configured and with our unique ship-in-rack capability this means faster, easier and more cost effective installation.

  • Powered by cybersecure Renaissance superBMS™ and supported by cybersecure Renaissance superEMS™
  • 10-year performance warranty
  • High energy density kWh/㎥
  • Real time monitoring and reporting down to the minute via the Energy Renaissance portal, accessible from any internet connected device
  • Air cooled for safety and reliability
  • Transportable; packs designed to be transported in rack to site
renaissance superRack twin 2

You can find more on there website here

News
Ganfeng LiEnergy commission 10GWh battery production facilities in Chongqing

Jiangxi Ganfeng LiEnergy Technology Co.,Ltd. (aka “Ganfeng LiEnergy” ), is a Chinese lithium battery manufacturer
Ganfeng LiEnergy signed an agreement on September 1 to build the battery technology industrial park and an advanced battery R&D center in Chongqing’s Liangjiang New Area.

It is estimated the development will cost in excess of 5 Billion Yuan (CNY). Around 400 Million of which is to be used for R&D for Solid State technology.

The majority shareholder of Ganfeng LiEnergy is Ganfeng Lithium, one of the world’s top producers of the commodity used in electric vehicle batteries. Ganfeng Lithium is well known as a supplier of battery-grade lithium to clients including automakers like Tesla, BMW, and Volkswagen Group. They have offices in Australia along with 2 mines, that I am aware of at the time of writing.

According to an announcement Ganfeng Lithium issued in early August, Ganfeng LiEnergy will spend about 3 billion yuan ($463.851 million) on another 5 GWh battery plant in Ganfeng’s home province Jiangxi, which will be put into operation in October 2023.


(Source – Ganfeng LiEnergy WeChat Account)

X

Please enter your email address to receive your cart as a PDF.