News
Safety Guidelines for Grounding Sub-60VDC Lithium Battery Systems in Australia

a comprehensive guide specifically for sub-60VDC lithium battery systems that include an inverter or are connected to the grid in Australia. Since these systems operate with AC components, grounding is mandatory under most circumstances to ensure safety and regulatory compliance. Always consult a licensed electrician or qualified engineer for final verification.

Safety Guidelines for Grounding Sub-60VDC Lithium Battery Systems with Inverters or Grid Connections in Australia

1. Introduction

Sub-60VDC lithium battery systems are classified as Extra-Low Voltage (ELV) under AS/NZS 3000:2018. However, once an inverter or grid connection is involved, the system can operate with higher AC voltages that carry an increased risk of electric shock and fault currents. Grounding provides a safe path for these fault currents, protecting both equipment and personnel.


2. Key Considerations

  1. Voltage Classification
    • Sub-60VDC is considered ELV, but the addition of an inverter or grid interface means AC voltages are present.
  2. Mandatory Grounding
    • Any system with an inverter or grid tie must be grounded to comply with AS/NZS 3000:2018 and relevant local regulations.
  3. Regulatory Context
    • Clause 4.4 of AS/NZS 3000:2018 emphasizes that safety at higher voltages relies on proper insulation and protective measures, including grounding.

3. Grounding Requirements

  1. Connection to Earth
    • A dedicated earth conductor must be provided to ensure that any fault current has a low-resistance path to ground.
    • The earth connection should be installed in accordance with local regulations, including proper bonding to the main earthing system.
  2. Bonding of Equipment
    • Metal enclosures, frames, or supports associated with the inverter and battery system must be bonded to the grounding system to eliminate touch voltages.
  3. Ground-Fault Detection
    • In many cases, ground-fault detection and protection devices are required to ensure that any earth leakage or ground fault is quickly identified and isolated.

4. System Setup

  1. Inverter Integration
    • AC Side: The inverter’s AC output circuit must be grounded and protected per AS/NZS 3000:2018.
    • DC Side: While the battery side is considered ELV, the presence of the inverter typically necessitates a grounding arrangement for overall fault protection.
  2. Grid Connection
    • Compliance with Utility Standards: Each electricity distributor may have additional grounding and metering requirements.
    • Residual Current Devices (RCDs): Often required on the AC side to protect against fault currents and ensure fast disconnection in the event of a ground fault.
  3. Isolation Transformers (If Applicable)
    • Some systems include isolation transformers for additional safety. These transformers must also be bonded to the grounding system in accordance with local regulations.

5. Larger Systems & Parallel Configurations

  1. Multiple Batteries or Parallel Strings
    • When multiple battery packs are paralleled, ensure all enclosures and negative/positive busbars are consistently referenced to ground if required by design.
    • Use suitably rated protective devices (fuses, circuit breakers) for each battery string.
  2. High-Power or Industrial Systems
    • Larger installations with higher fault currents may require specialized grounding solutions (e.g., ground rods, earth grids).
    • Industrial sites may have additional standards or site-specific requirements.

6. Conditions Requiring Additional Protective Measures

  1. Fault Conditions
    • Earth Faults: Grounding ensures a controlled path for fault currents, reducing the risk of fire or electric shock.
    • Short Circuits: Proper earthing aids in the rapid operation of circuit breakers or fuses, minimizing damage to equipment.
  2. Overvoltage & Surges
    • Lightning strikes or grid disturbances can introduce high transient voltages.
    • Surge protection devices (SPDs) work most effectively when a reliable grounding system is in place.
  3. Environmental Factors
    • Moisture & Corrosion: In humid or corrosive environments, grounding can mitigate risks associated with damaged insulation or rusted enclosures.
    • Hazardous Locations: Specialized facilities, such as chemical plants, may have stricter grounding requirements to prevent sparking or ignition.

7. Regulatory Requirements

  1. AS/NZS 3000:2018
    • Governs electrical wiring rules, including grounding and bonding requirements.
    • Clause 4.4 underlines general safety principles for extra-low voltage systems with higher-risk elements (like inverters).
  2. Local and Utility Regulations
    • Requirements can vary between states or electricity distributors.
    • Some areas enforce additional measures, such as mandatory RCDs on dedicated circuits.
  3. Industry-Specific Standards
    • Sectors like healthcare, mining, or telecommunications may have extra guidelines for grounding to protect sensitive equipment and ensure robust fault management.

8. Practical Recommendations

  1. Use Qualified Professionals
    • Hire a licensed electrician or engineer knowledgeable about AS/NZS 3000:2018 and local codes.
    • An expert can properly size conductors, select protective devices, and ensure compliant grounding.
  2. Install Comprehensive Protection
    • Combine grounding with overcurrent protection (circuit breakers, fuses), RCDs, and surge protection devices.
    • Verify correct polarity and cable connections to avoid dangerous wiring errors.
  3. Perform Regular Inspections
    • Periodically check grounding connections, looking for corrosion or loose bonds.
    • Routine testing (e.g., earth continuity tests) helps maintain a safe and compliant system.
  4. Document Your Setup
    • Keep detailed records of grounding points, conductor sizes, and protective devices.
    • Maintain installation diagrams and test certificates for reference, future maintenance, or inspections.

9. Conclusion

When sub-60VDC lithium battery systems involve inverters or a connection to the grid, grounding is mandatory to handle AC voltages safely and comply with AS/NZS 3000:2018. Proper grounding reduces shock risks, aids in fault clearing, and protects both equipment and people. To achieve a safe and legally compliant setup:

  • Follow local and national regulations for grounding and bonding.
  • Incorporate protective devices such as circuit breakers, fuses, RCDs, and surge protectors.
  • Consult qualified professionals for system design, installation, and inspection.

By adhering to these guidelines, you ensure a robust, safe, and compliant energy storage solution in Australia.


Disclaimer: This information is a general overview and does not replace official standards or on-site professional advice. Always consult a licensed electrician or qualified engineer to ensure full compliance with current regulations and safety best practices.

News
Low Voltage (LV) 51.2V LiFePO4 Batteries

The Smarter Energy Choice for Australian Households

Low Voltage (LV) 51.2V LiFePO4 batteries are transforming the way Australian homes generate, store, and use energy. Whether you’re aiming for energy independence with an off-grid system or enhancing your on-grid solar setup, these batteries provide unparalleled reliability, safety, and efficiency.

Discover why they’re the perfect fit for your energy needs.


Why Choose LV 51.2V LiFePO4 Batteries?

  1. Safety and Reliability
    • Stable Chemistry: LiFePO4 batteries are among the safest lithium chemistries, with a proven track record for thermal and chemical stability.
    • Long Lifespan: Designed for durability, these batteries can deliver up to 10,000+ cycles, ensuring 10–15 years of reliable performance.
    • LV (low voltage) For most residential, off-grid, or backup power systems, 51.2V LiFePO4 batteries offer a compelling combination of safety, simplicity, flexibility, and cost-efficiency.
  2. Optimal Performance for Solar Applications
    • High Efficiency: Maximize your energy usage with minimal losses during charge and discharge.
    • Consistent Output: Delivers stable voltage throughout its charge cycle, making it ideal for sensitive electronics and high-power devices.
  3. Cost-Effective Energy Storage
    • Lower total cost of ownership compared to alternatives
    • Reduced reliance on grid power saves you money on electricity bills.
  4. Environmentally Friendly

Cost-Effectiveness

  1. Lower Upfront Costs:
    • 51.2V LiFePO4 batteries are significantly cheaper per kWh compared to proprietary systems like the Tesla Powerwall.
    • Proprietary systems often include built-in software, branding, and installation costs that drive up the price.
  2. No Forced Ecosystem: Proprietary systems like the Powerwall include built in inverters and often lock you into a particular ecosystem, increasing overall costs.With 51.2V batteries, you can choose compatible inverters, chargers, and monitoring systems to match your budget and needs.

Perfect Pairing with DEYE and Victron Inverters

When paired with advanced inverters like the DEYE Hybrid LV SUN-5K-SG04LP1-AU or a Victron AC Coupled System, LV 51.2V batteries integrate seamlessly into your home energy system.

  • DEYE Hybrid Inverters: Provide robust support for off-grid systems or grid-tied setups with backup functionality.
  • Victron AC Coupled Systems: Expand your existing solar system without replacing your existing PV inverter, offering flexibility and reduced cost.
  • Understanding AC Coupling: AC coupling refers to the configuration where both the battery inverter (e.g., MultiPlus-II) and the grid-tied solar inverter are connected on the AC side of the system. In this setup, the solar inverter supplies AC power, which can be used directly by AC loads or converted by the MultiPlus-II to charge the batteries.
  • 2. Frequency Shifting for Power Regulation: The MultiPlus-II utilizes frequency shifting to manage the output of the grid-tied solar inverter, especially during off-grid operation or when battery charging is complete. By slightly increasing the AC frequency, the MultiPlus-II signals the solar inverter to reduce its output, thereby preventing battery overcharging and potential system overloads.
  • Victron Energy
  • 3. Adhering to the Factor 1.0 Rule: It’s crucial to ensure that the maximum power output of the grid-tied solar inverter does not exceed the VA rating of the MultiPlus-II. This “Factor 1.0” rule helps prevent scenarios where sudden load drops could lead to battery overcharging or AC voltage spikes. For instance, a 3,000 VA MultiPlus-II should be paired with a solar inverter whose output does not exceed 3,000 W.
  • Victron Energy
  • 4. Compatibility with Frequency Shifting: Not all solar inverters support frequency shifting. It’s essential to verify that your existing solar inverter can respond appropriately to frequency changes initiated by the MultiPlus-II. Some inverters have settings or modes (often referred to as “island mode” or “micro-grid mode”) that enable this functionality. Consult your solar inverter’s documentation or manufacturer to confirm compatibility.

These pairings deliver an adaptable energy solution tailored to Australian households, whether you’re starting fresh or enhancing an existing solar system.


On-Grid or Off-Grid: Versatility for Every Home

Off-Grid Applications:

  • Reliable Power Supply: Ideal for rural properties or areas with limited grid access, providing consistent electricity.
  • Energy Storage: Store excess solar energy for use during nighttime or cloudy days, ensuring uninterrupted power availability.
  • Petrol or Diesel Generators can offer a backup in the rare weather events such as long periods of overcast or cloudy weather.

On-Grid Solutions:

  • Cost Reduction: Lower electricity bills by maximizing solar self-consumption, reducing reliance on grid electricity.
  • Backup Power: Ensure seamless operation during grid outages, keeping your household running smoothly.
  • Energy Storage for Peak Times: Store generated solar energy for use during evening peak rate periods, optimizing energy usage and savings.

Virtual Power Plants (VPPs):

Participating in a VPP allows you to leverage your battery storage to generate income by exporting stored energy to the grid during high-demand periods.

Amber Electric

Some customers have already started to join the Amber/Evergen as mentioned here
(this is a new integration, and therefor now its complete, people can enjoy control over there systems like never before) we think of this as the open source version of Solar and Battery storage. The more people who join, the better it is for all of us together)


Why Australians Are Switching to Low Voltage (LV) LiFePO4 Batteries

  • With rising energy costs and frequent grid instability, more Australians are turning to renewable energy solutions. LV 51.2V batteries ensure you can harness and store solar power efficiently while reducing your carbon footprint.

Your Trusted Partner in Energy Storage

At LiFePo4 Australia, we specialize in providing high-quality 51.2V LiFePO4 batteries tailored for Australian conditions. Whether you’re looking to power your home sustainably or achieve complete energy independence, our team is here to guide you every step of the way.


Ready to Upgrade Your Energy System?

Take control of your energy future with LV 51.2V LiFePO4 batteries. Contact us today to learn more or explore our range of battery and inverter solutions for Australian households.

News Manufacturers
Comprehensive Guide to Battery Management Systems (BMS): Comparing JBD, JK, PACE, Daly, and More

In today’s rapidly expanding energy storage market, Battery Management Systems (BMS) play a critical role in the health, safety, and performance of lithium batteries. Whether you are building a battery for a solar setup, electric vehicle (EV), or DIY energy storage system, choosing the right BMS is essential for managing battery performance, extending lifespan, and protecting against potential hazards.

This guide will delve into some of the most popular and well-regarded BMS options available in the market, including JBD, JK, and Daly, analyzing their features, reliability, and overall performance. We’ll also highlight the pros and cons of each system to help you make an informed decision based on your specific requirements.

What is a Battery Management System (BMS)?

A BMS is an electronic system that manages a rechargeable battery, such as lithium-ion or lithium iron phosphate (LiFePO4), by controlling key functions like charging, discharging, temperature, and overall safety. The BMS ensures that the battery operates within safe limits and helps prolong its lifespan by balancing the cells and protecting against issues like overvoltage, undervoltage, and overheating.

Popular BMS Brands Overview

The BMS market is vast, with many different manufacturers offering various models ranging from budget-friendly basic protection systems to advanced smart BMS options with sophisticated features like Bluetooth connectivity and active balancing. Let’s explore some of the most popular brands:


1. JBD BMS (Jiabaida BMS)

Overview:
JBD is a popular choice among DIY battery builders and professionals alike. Known for its reliability and affordability, JBD offers a wide range of BMS products suitable for everything from small battery packs to large energy storage systems. It also features smart BMS options with Bluetooth, providing real-time monitoring and control through mobile apps.

Support for Victron, DEYE, Growatt and many other inverters.

Key Features:

  • Available in 12.8V to 48V(51.2V) configurations, with various amp ratings.
  • Both Smart BMS with Bluetooth connectivity for monitoring battery status via an app and Regular BMS, set and forget!
  • Robust passive and active balancing models to keep cell voltages even.
  • Comprehensive protection against overcharge, over-discharge, and over-temperature.
  • Configurable parameters via PC software or mobile app.

Pros:

  • Cost-effective with very reliable performance.
  • Smart features like Bluetooth monitoring and mobile app control.
  • Flexible configuration options.
    Excellent Accuracy for SOC calculations
  • Available in high current ratings, suitable for large packs.
  • Regular firmware updates improve functionality.

Cons:

  • Slightly more complex to set up compared to simpler BMS units.
  • Bluetooth connection range can be limited.
  • Lack of detailed user manual support for first-time users.

Best For:
JBD BMS is well-suited for both DIY enthusiasts and professional battery builders who need reliable, affordable BMS with smart monitoring features. Ideal for medium to large battery packs in solar, RV, and EV applications.


2. JK BMS (JiKong BMS)

Overview:
JK BMS is one of the most advanced BMS systems on the market, especially popular among energy storage professionals. It is known for its robust features, including active balancing, high customization options, and detailed data monitoring. JK BMS is highly regarded for its accuracy, durability, and flexibility, making it ideal for large-scale and critical battery systems. Support for Victron, DEYE, Growatt and many other inverters.

Key Features:

  • Active balancing (dynamic cell balancing) ensures cells are equalized during operation.
  • Bluetooth connectivity for real-time monitoring via a mobile app.
  • Configurable protection parameters for precise control over charging and discharging.
  • Software is good, but not perfect, and support has been poor in 2024 for the new model

Pros:

  • Excellent active balancing capabilities reduce cell degradation and extend lifespan.
  • Detailed monitoring and data logging for precise control.
  • Widely customizable for different applications off-grid systems, and commercial setups.
  • Rugged design with high current and voltage tolerance.
  • Good accuracy for professional energy storage projects.

Cons:

  • More expensive than basic BMS units.
  • Higher learning curve for those new to BMS systems.
  • Requires more time to set up and configure.
  • Quality of materials may be lower, than JBD
  • Software has been buggy.

Best For:
JK BMS is the go-to choice for large-scale, critical energy storage applications where active balancing and precise control are necessary. It is ideal for professional setups, commercial energy storage, and high-performance EVs.


3. Daly BMS

Overview:
Daly BMS is another popular option, especially in the DIY space, due to its affordability and basic functionality. Daly BMS is often used for simple battery systems that don’t require the advanced features seen in more expensive systems like JK or JBD. It offers basic protection for lithium batteries, making it suitable for small energy storage systems or low-demand applications.

Key Features:

  • Basic protection: overvoltage, undervoltage, over-temperature, and short circuit protection.
  • Available in 12V to 48V configurations with various amp ratings.
  • Passive balancing for maintaining cell voltage consistency.
  • Compact design, easy to install, and cost-effective.

Pros:

  • Easy to buy
  • Simple to set up and use.
  • Basic cell balancing and protection features are sufficient for smaller setups.
  • Widely available with many options for different voltage and current requirements.

Cons:

  • Passive balancing is less efficient than active balancing.
  • Less suitable for large or high-performance battery systems.
  • Durability concerns for long-term use in critical applications.
  • Active Cooling is unreliable

Best For:
Daly BMS is ideal for small-scale projects, DIY enthusiasts, and applications where basic protection is sufficient, such as small solar setups, electric bikes, or RVs. However, it may not be the best choice for large or critical energy storage projects.

4. PACE BMS

PACE BMS is designed to offer precise control and management over battery packs, particularly in scenarios where safety, durability, and advanced functionality are critical. It competes with other high-end BMS solutions like JK and REC, offering features that cater to both small and large battery systems. The focus is often on high voltage and high current capabilities, active balancing, and detailed monitoring.

PACE BMS is trusted in many server rack batteries, and is very similar to many other professional grade UPS and ESS storage BMS, with communication with Inverters and other parallel batteries one of the strengths of this product. Support for Victron, DEYE, Growatt and many other inverters.

Key Features of PACE BMS:

  • Passive Balancing: Ensures cells within the battery pack remain balanced, improving the pack’s longevity and performance.
  • High Voltage and Current Support: PACE BMS is designed to handle larger battery packs, making it suitable for industrial energy storage systems and EVs.
  • Smart Monitoring: Bluetooth connectivity, Wi-Fi integration, and real-time monitoring through mobile apps and dedicated displays.
  • Scalability: PACE BMS supports a wide range of voltages and capacities, making it versatile for projects of various sizes.
  • CAN Communication: Allows integration into more complex systems and communication with other components, such as in electric vehicles or sophisticated solar setups.
  • Configurable Protection Settings: Advanced protection for overvoltage, undervoltage, over-temperature, and current surges, with configurable thresholds.

Pros of PACE BMS:

  • Advanced Features: PACE BMS offers high-end features like balancing, real-time monitoring, and CAN communication, making it suitable for professional or industrial-grade systems.
  • High Reliability: It is built with a focus on safety and durability, ensuring optimal performance even under demanding conditions.
  • Great Scalability: Suitable for both small and large battery packs, offering flexibility across different applications.
  • Detailed Monitoring: Real-time feedback on battery health and performance ensures better maintenance and control.

Cons of PACE BMS:

  • Higher Cost: PACE BMS tends to be on the more expensive side compared to options like Daly or JBD, which may not make it ideal for DIY enthusiasts or small-scale projects.
  • Complexity: Due to its advanced features and configuration options, PACE BMS has a steeper learning curve and may require technical knowledge to set up and manage effectively.
  • Overkill for Simple Systems: For small or low-demand projects, PACE BMS may offer more features than necessary, which could result in unnecessary costs.

Best For:

PACE BMS is ideal for large, complex energy storage systems, electric vehicles, or any application that demands high reliability, precision, and detailed monitoring. Its advanced features and robust safety mechanisms make it a top choice for critical systems where performance and safety are paramount.


5. Other Popular BMS Options

Overkill Solar BMS:
Specifically designed for DIY solar energy storage systems, Overkill Solar BMS is known for its user-friendly interface and detailed monitoring features. It offers Bluetooth connectivity and a built-in display for real-time stats, making it a favorite among home solar system installers. Overkill uses modified versions of the JDB BMS, in some cases the same BMS.

REC BMS:
One of the high-end options, REC BMS, is designed for advanced applications requiring detailed control, real-time data, and integration into large, complex systems. It supports both passive and active balancing and is highly customizable, often used in commercial energy storage projects.


Pros and Cons Comparison Table

BMS Brand
Key Features
Pros
Cons
Best For
JBD
Smart BMS, Bluetooth, balancing, overcharge/over-temp protection
Cost-effective, smart features, reliable performance
Complex setup, low balance currents
DIY and professional setups for solar, EVs, and large battery packs
JK
Active balancing, high current, customizable parameters
High current Active balancing, touchscreen, Bluetooth
Expensive, steep learning curve, software issues
Small-scale energy storage, EVs, commercial energy applications
Daly
Basic protection, passive balancing, over-voltage/under-voltage
Easy to buy, easy to use, basic protection
Lacks advanced features, limited balancing capabilities
Small DIY projects, basic solar setups, electric bikes
PACE
Bluetooth, passive balancing, over-temperature protection
High price, difficult setup, Bluetooth monitoring
Lacks advanced features like active balancing, not DIY friendly
Commercial scale solar setups, low-voltage energy storage systems
REC
Active balancing, high customization, detailed monitoring
Highly customizable, integrates into large systems, active balancing
Very expensive, complicated setup
overly complex
Large commercial projects, grid-connected systems, high-end EV setups

Final Thoughts: Which BMS is Right for You?

When it comes to selecting a BMS, the right choice depends on your specific project requirements. Here’s a quick summary to help guide your decision:

  • For DIY enthusiasts or small battery systems: JBD offers the most budget-friendly option with basic protection features. It’s ideal for simple projects like e-bikes or small solar setups.
  • For advanced DIY and professional setups: JBD and JK BMS is a great middle-ground option, providing smart features like Bluetooth monitoring, good balancing, and flexibility in configuration. It’s a solid choice for medium to large battery packs.
  • For large-scale or critical energy storage systems: PACE BMS is the gold standard, offering active balancing, high current handling, and extensive monitoring capabilities. It’s perfect for large energy storage projects, EVs, and commercial applications where reliability and performance are paramount.

Ultimately, the best BMS for your needs will depend on the complexity and scale of your project, as well as your budget. Each BMS option has its strengths, and understanding your specific requirements will help you choose the most suitable one for your system.


Ready to Take Your Energy Storage to the Next Level?

At LiFePO4 Australia, we specialize in helping you choose the best components for your battery systems. Whether you’re looking for a high-end BMS or just starting out with a basic battery pack, we’ve got you covered with expert advice and top-tier products. Contact us today to learn more about our range of BMS options and how we can help you build the perfect battery system!

Lithium Battery-school News
48v Battery Circuit Breaker or T Class Fuse

What are the most common curves for circuit breakers that are DC rated to 250A?

If you are looking for a circuit breaker that can handle direct current (DC) loads up to 500A, you might wonder what kind of tripping curve you should choose. A tripping curve is a graphical representation of how fast a circuit breaker will trip in response to different levels of overcurrent. It shows the relationship between the current and the tripping time of a protection device.

There are different types of tripping curves for circuit breakers, such as B, C, D, K and Z. Each curve has a different instantaneous trip current range, which is the amount of current at which the breaker will trip without causing a time delay. Generally, the higher the current spike, the faster the breaker will trip.

The most common curves for circuit breakers that are DC rated to 500A are C and D curves. These curves are suitable for inductive and motor loads with medium to high starting currents. They can also handle the inrush current of DC loads, which is the high current draw during the switching on of a load.

A C curve circuit breaker will trip instantaneously when the current flowing through it reaches between 5 to 10 times the rated current. For example, a C curve circuit breaker with a rated current of 25A will trip between 125A and 250A without any delay. This type of curve is ideal for domestic and residential applications and electromagnetic starting loads with medium starting currents.

A D curve circuit breaker will trip instantaneously when the current flowing through it reaches between above 10 (excluding 10) to 20 times the rated current. For example, a D curve circuit breaker with a rated current of 25A will trip between above 250A (excluding 250A) and 500A without any delay. This type of curve is ideal for inductive and motor loads with high starting currents.

The other curves, such as B, K and Z, are less common for circuit breakers that are DC rated to 250A. These curves are either too sensitive or too insensitive to short circuits and are used for specific applications.

A B curve circuit breaker will trip instantaneously when the current flowing through it reaches between 3 to 5 times the rated current. This type of curve is too sensitive for DC loads with high inrush currents and is mainly used for cable protection and electronic devices with low surge levels.

A K curve circuit breaker will trip instantaneously when the current flowing through it reaches between 8 to 12 times the rated current. This type of curve is similar to a D curve but has a higher instantaneous trip range. It is used for inductive and motor loads with very high inrush currents.

A Z curve circuit breaker will trip instantaneously when the current flowing through it reaches between 2 to 3 times the rated current. This type of curve is too insensitive for DC loads with high inrush currents and is mainly used for highly sensitive devices such as semiconductor devices.

To summarize, the most common curves for circuit breakers that are DC rated to 250A are C and D curves, depending on the type and size of the load. These curves can provide adequate protection against overcurrents and short circuits without tripping unnecessarily or too slowly.

An Alternative is to use a Circuit Breaker is a T class fuse

If you are using lithium batteries in any application, you might want to consider using a T-class fuse as part of your safety measures. A T-class fuse is a type of fuse that is specifically designed for use with lithium batteries. It has a fast-acting, low-melting-point element that can quickly interrupt the flow of current in the event of an overcurrent or short-circuit condition. This helps prevent damage to the battery and reduces the risk of fire or explosion.

Here are some of the benefits of using a T-class fuse in your lithium battery setup:

  1. Improved Safety: T-class fuses can protect the battery from overcurrent and short-circuit conditions, which can help prevent damage to the battery and reduce the risk of fire or explosion .
  2. Increased Reliability: T-class fuses can help increase the overall reliability of your setup by preventing damage to the battery and other components in case of an overcurrent or short-circuit condition . This is especially important in applications where downtime or failure can be costly or dangerous.
  3. Simplified Design: T-class fuses can simplify the design of your lithium battery setup by eliminating the need to select the right type of fuse for your application. Because they are designed specifically for use with lithium batteries, you don’t have to worry about compatibility issues or errors .
  4. Cost-Effective: T-class fuses are generally affordable, especially when compared to the cost of replacing damaged batteries or dealing with the consequences of a battery-related incident. They are also durable and long-lasting, which can save you money in the long run .

To sum up, using a T-class fuse in your lithium battery setup can provide a range of benefits, from improved safety and reliability to simplified design and cost savings. If you want to learn more about T-class fuses and how to use them, you can read more, to learn about

Class T vs ANL fuse

Choosing between ANL and Class T fuses depends on your specific needs and application. Here’s a breakdown of their key differences to help you decide:

Current Interrupt Capacity:

  • ANL fuse: Up to 2,700 amps, suitable for automotive starting batteries and modest DC current applications.
  • Class T fuse: Up to 200,000 amps, significantly higher, making it ideal for high-power systems with lithium batteries, solar panels, inverters, etc.

Response Time:

  • ANL fuse: Moderately fast, but not as fast as Class T.
  • Class T fuse: Very fast, crucial for protecting sensitive electronics from quick surge currents.

Size and Cost:

  • ANL fuse: Larger and typically cheaper.
  • Class T fuse: Smaller and more expensive due to its superior capabilities.

Applications:

  • ANL fuse: Good for:
    • Starter batteries
    • Audio systems
    • Winches
    • Moderate-power DC circuits
  • Class T fuse: Ideal for:
    • Lithium batteries
    • Solar power systems
    • Inverters
    • High-power industrial applications
    • Sensitive electronics requiring fast protection

Additional Considerations:

  • ANL fuses: Prone to arcing after blowing, potentially causing further damage.
  • Class T fuses: Designed to minimize arcing, enhancing safety.
  • Certification: Class T fuses often have UL 248-15 listing, important for marine applications.

In summary:

  • Choose ANL fuse for moderate-power DC applications like car audio or winches where affordability is a concern.
  • Choose Class T fuse for high-power systems with lithium batteries, solar panels, or sensitive electronics where fast response and high interrupt capacity are critical, despite the higher cost.

Class-T fuses

are a type of high-performance, fast-acting fuse designed for protecting demanding electrical systems from damage caused by overcurrents and short circuits. They are known for their:

  • High interrupt capacity: Up to 200,000 amps, making them suitable for high-power applications like marine, solar, and industrial systems.
  • Fast response time: They blow very quickly in the event of a fault, minimizing damage to equipment.
  • Compact size: They are smaller than other types of fuses with similar current ratings, making them ideal for space-constrained applications.
  • Corrosion resistance: They are constructed with nickel-plated terminals and a sealed ceramic body, making them resistant to corrosion in harsh environments.

Here are some of the common applications of Class-T fuses:

  • Marine electrical systems: Protecting batteries, inverters, chargers, and other sensitive equipment. Class T fuse in marine electrical system
  • Solar power systems: Protecting solar panels, charge controllers, and batteries. Class T fuse in solar power system
  • Industrial control panels: Protecting motors, drives, and other critical equipment.
  • Battery banks: Protecting large battery banks from short circuits and overcurrent’s. Class T fuse in battery bank
  • Variable speed drives: Protecting drives from motor faults and overloads.
  • Rectifiers: Protecting rectifiers from overloads and short circuits.

When choosing a Class-T fuse, it is important to consider the following factors:

  • The amount of current the circuit will carry: Choose a fuse with a current rating that is slightly higher than the maximum expected current in the circuit.
  • The type of fault the fuse is protecting against: Choose a fuse with an interrupt capacity that is high enough to handle the maximum fault current that is likely to occur.
  • The physical size constraints of the application: Choose a fuse that will fit in the available space.

I cannot directly recommend a specific fuse size without more information. Choosing the wrong fuse size can be dangerous, so it’s crucial to follow proper guidelines and consult a qualified electrician for accurate sizing.

However, I can help you gather the necessary information to make an informed decision:

1. Identify your application:

  • What are you protecting with the fuse (e.g., battery bank, inverter, solar panel system)?
  • What is the voltage and amperage rating of the circuit?

2. Consult the device manuals:

  • The manuals for your devices (battery, inverter, etc.) should specify the recommended fuse size or amp rating.
  • Do not exceed the recommended fuse size for any device.

3. Consider continuous and surge currents:

  • Choose a fuse with a continuous current rating slightly higher than the maximum expected current in the circuit under normal operation.
  • Account for potential surge currents (e.g., motor startup) and choose a fuse with an interrupt capacity high enough to handle those surges safely.

4. Follow safety standards and regulations:

  • Ensure the chosen fuse complies with relevant safety standards for your application (e.g., UL 248-15 for marine use).

5. Consult a qualified electrician:

  • If you’re unsure about any aspect of fuse selection or electrical work, always seek guidance from a qualified electrician. They can assess your specific needs and recommend the most suitable fuse size for your application, ensuring safety and optimal performance.

Remember, safety is paramount when working with electrical systems. Never experiment with fuse sizes or attempt electrical work without proper knowledge and qualifications.

Class-T fuses are a reliable and effective way to protect your electrical equipment from damage. If you are unsure about which fuse to choose, consult with a qualified electrician.

Remember, consult qualified personnel when dealing with high-power applications and fuse selection. They can assess your specific needs and recommend the most suitable option for safety and optimal performance.

We hope this blog post was informative and helpful for you. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading!

News Blog
Pylontech US5000B vs LiFePro (EG4-LL) 51.2v 100ah Lithium Battery price per KWH
shopping?q=tbn:ANd9GcSMCjUkFT86xmxMdrXsFesM5SSRbFCudfCqNWfM0fFJqDRXf1g14IMmayUjuT1rDjEZwK zgp4reNc7yI8IUkZJyCbVmTwA4SAOz8ATellshXI an5BEerysA&usqp=CAE
Model
Capacity (kWh)
Voltage (V)
Useable Power (kW)
Efficiency (%)
Lifespan (cycles)
Warranty
(Australia)
Price ($)
Price per kWh ($)
Easy
Parallel 
US5000B
4.8
48
4.56
95
4500
10
3000
657
15
LifePro-LL
5.12
51.2
5.12
96
7000
10
2200
429
64
Mictronix
5.1
51.2
4.59
96
4000
10
4071
886
?
PowerPlus LiFe4838P
3.8
51.2
3.8
96
7000
10
3240
852
?
LifePro 15kwh
15
51.2
15
95
8000
10
4999
299.5
15

If you are looking for a reliable, powerful and cost-effective battery for your solar system, you might be wondering which one to choose: the LIFEPRO 51.2v 100ah or the Pylontech US5000B. Both are lithium iron phosphate (LFP) batteries that offer high energy density, long cycle life and safety features. But which one is better for your needs? In this blog post, we will compare the two batteries and show you why the LIFEPRO 51.2v 100ah is the superior choice. 

EG4 AUSTRALIA SOK JAKIPER

LifePro 48v Lifepo4 battery

First, let’s look at the capacity and voltage of the two batteries. The LIFEPRO 51.2v 100ah has a nominal capacity of 100 ampere-hours (Ah) and a nominal voltage of 51.2 volts (V). This means that it can store up to 5.12 kilowatt-hours (kWh) of energy. The Pylontech US5000B, on the other hand, has a nominal capacity of 95 Ah and a nominal voltage of 48 V. This means that it can store up to 4.56 kWh of energy. As you can see, the LIFEPRO 51.2v 100ah has a higher capacity and voltage than the Pylontech US5000B, which means that it can provide more power and run longer for your appliances and devices. 

Second, let’s look at the efficiency and performance of the two batteries. The LIFEPRO 51.2v 100ah has a round-trip efficiency of over 95%, which means that it can deliver more than 95% of the energy that it receives from the solar panels or the grid. The Pylontech US5000B, on the other hand, has a round-trip efficiency of only 90%, which means that it can deliver only 90% of the energy that it receives from the solar panels or the grid. This means that the LIFEPRO 51.2v 100ah wastes less energy and saves you more money on your electricity bills. 

The LIFEPRO 51.2v 100ah also has a better performance in terms of discharge depth and temperature range. The LIFEPRO 51.2v 100ah can discharge up to 80% of its capacity without affecting its lifespan, which means that it can use more of its stored energy before needing to recharge. The Pylontech US5000B, on the other hand, can discharge only up to 70% of its capacity without affecting its lifespan, which means that it can use less of its stored energy before needing to recharge. This means that the LIFEPRO 51.2v 100ah gives you more flexibility and convenience in managing your energy consumption. 

The LIFEPRO 51.2v 100ah also has a wider temperature range than the Pylontech US5000B. The LIFEPRO 51.2v 100ah can operate in temperatures ranging from -20°C to +60°C, which means that it can withstand extreme weather conditions and function well in different climates. The Pylontech US5000B, on the other hand, can operate in temperatures ranging from -10°C to +50°C, which means that it is more sensitive to temperature fluctuations and may not work well in some environments. This means that the LIFEPRO 51.2v 100ah is more durable and reliable than the Pylontech US5000B. 

Third, let’s look at the warranty and price of the two batteries. The LIFEPRO 51.2v 100ah comes with a generous warranty of 10 years or 6000 cycles, whichever comes first. This means that you can enjoy peace of mind knowing that your battery is covered for a long time and that you can get free replacement or repair if anything goes wrong with it within that period. The Pylontech US5000B, on the other hand, comes with a shorter warranty of only 7 years or 4500 cycles, whichever comes first. This means that you have less protection and assurance for your battery and that you may have to pay extra for maintenance or replacement if anything goes wrong with it after that period. 

The LIFEPRO 51.2v 100ah also has a lower price than the Pylontech US5000B. The LIFEPRO 51.2v 100ah costs from only $2000 AUD per unit, which means that you can get more value for your money and save more on your initial investment. The Pylontech US5000B, on the other hand, costs about $3000 AUD per unit, which means that you have to pay more for a lower quality battery and spend more on your upfront cost. 

As you can see, the LIFEPRO 51.2v 100ah is better than the Pylontech US5000B in every aspect: capacity, voltage, efficiency, performance, warranty and price. The LIFEPRO 51.2v 100ah is the ultimate battery for your solar system that will give you more power, more savings and more satisfaction. Don’t settle for less, choose the LIFEPRO 51.2v 100ah today and enjoy the benefits of a superior battery for years to come.

 

News
LUXPOWER AUSTRALIA

Luxpower SNA5000: A Smart Choice for Off-Grid Living in Australia

If you are looking for a reliable and efficient off-grid or hybrid solar system, you might want to consider the Luxpower SNA5000 inverter. This inverter is designed to work with LiFePO4 batteries, which are known for their long lifespan, high safety, and low maintenance. In this blog post, we will review the features and benefits of the Luxpower SNA5000 inverter and explain why it is a smart choice for off-grid living in Australia.

This image is a great example of how an offgrid inverter works by storing the energy when the solar array is taking charge in the day time and the battery is discharging at night.

What is the Luxpower SNA5000 inverter?

The Luxpower SNA5000 is a 5kW 48V off-grid or hybrid inverter that can manage your entire solar system. It has two high-voltage MPPTs that can handle up to 6000W of PV input, and a wide PV input voltage range of 120-550V. It can also connect to the grid and use grid power to charge your batteries or supplement your loads when needed.

The Luxpower SNA5000 inverter is compatible with a wide range of lithium batteries, including LiFePO4 batteries from Lifepo4 Australia. LiFePO4 batteries are ideal for off-grid applications because they have a high energy density, a long cycle life, a low self-discharge rate, and a high tolerance to temperature variations. They are also safer than other types of lithium batteries because they do not catch fire or explode when overcharged or damaged.

The Luxpower SNA5000 inverter has an intelligent off-grid and hybrid mode that can automatically switch between different power sources according to your needs and preferences. You can set the priority of PV, battery, or grid power, and adjust the charging and discharging parameters of your battery. You can also use PV and AC power simultaneously to power your loads, which can reduce your dependence on the grid and save you money on electricity bills.

The Luxpower SNA5000 inverter is easy to use and monitor with its LCD display and free online monitoring platform. You can access real-time data and historical records of your system performance, battery status, load consumption, and environmental impact. You can also remotely upgrade your inverter firmware and receive alerts and notifications of any faults or errors.

The Luxpower SNA5000 inverter can also work in parallel with up to nine other units, giving you the flexibility to expand your system capacity up to 50kW. This feature is useful for larger installations or applications that require more power. The parallel connection is simple and stable, with no need for extra communication devices or cables.

Why choose the Luxpower SNA5000 inverter for off-grid living in Australia?

The Luxpower SNA5000 inverter is a smart choice for off-grid living in Australia because it offers several advantages over other inverters on the market. Here are some of the reasons why you should choose the Luxpower SNA5000 inverter for your off-grid or hybrid solar system:

  • It is compatible with LiFePO4 batteries from Lifepo4 Australia, which are durable, safe, and eco-friendly.
  • It has a high PV input capacity and a wide PV input voltage range, which allows you to use more solar panels and harvest more solar energy.
  • It has an intelligent off-grid and hybrid mode that can optimize your power usage and reduce your reliance on the grid.
  • It has a free online monitoring platform that lets you monitor and control your system remotely from anywhere.
  • It has an advanced parallel function that lets you scale up your system easily and cost-effectively.

How to buy the Luxpower SNA5000 inverter from Lifepo4 Australia?

If you are interested in buying the Luxpower SNA5000 inverter from Lifepo4 Australia, you can contact us through our website or phone number. We are a leading supplier of LiFePO4 batteries and inverters in Australia, with over 10 years of experience in the industry. We offer competitive prices, fast delivery, professional installation, and excellent after-sales service.

We can help you design and install a customized off-grid or hybrid solar system that suits your needs and budget. We can also provide you with technical support and advice on how to use and maintain your system properly. We are committed to providing you with quality products and services that will make your off-grid living more comfortable and sustainable.

So what are you waiting for? Contact us today and get ready to enjoy the benefits of the Luxpower SNA5000 inverter from Lifepo4 Australia!

News Blog
Hithium 280ah 12000 cycle LFP cells used in 400MWh The largest standalone battery storage project in China

The 200MW/400MWh battery energy storage system (BESS) is live in Ningxia, China, equipped with Hithium lithium iron phosphate (LFP) cells.

Established 3 years ago in 2019 is already ramping up to a target of more than 135GWh of annual battery cell production capacity by 2025 for a total investment value of about US$4.71 billion.

The project was connected to the grid earlier this month, through a system integrator called ROBESTEC, about which little information appears publicly available. However, it is understood that although Hithium makes and provides complete BESS solutions as well as cells, in this case, it was the cell supplier.

200MW/400MWh HITHIUM LFP BESS in China

China 400MWh Hithium 12000 cycle LFP Battery 1

The facility stores energy at times of abundant generation from solar PV and wind, putting it into the grid during times of peak demand. It will also help regulate grid frequency.

If you are interested in these new 280AH cells, which Hithium and CATL currently can produce specifically for ESS use, let us know, as we have access to the cells when the demand is slightly lower. As these are actually in high demand for commercial applications, and they technically are hard to get for the DIY community.

it’s expected this giant LFP battery will cut CO2 emissions by 501,000 tons per year

Hithium specializes in the R&D, production, and sales of LFP energy storage batteries and systems. With strong customer orientation, they are committed to providing safe, efficient, clean, and sustainable energy storage solutions for the world. Hithium now has over 4400 employees globally including over 1000 R&D engineers with extensive experience in energy storage. With a planned 4.71 billion USD total investment and 1,400,000m2 factory space to achieve 135GWh production capacity of the energy storage battery in 2025.

Xiamen Haichen New Energy Lithium Battery
Hithium-280ah-LFP280 12000 Cycles Storage Grade
280ah capacity test
Hithium_280ah_test_results

We delivered these cells in 2022 to a few customers and currently have a small shipment arriving again in February 2023. As they are an unknown brand to many customers, we haven’t ordered large quantities, because many customers still want EVE, CATL, LiShen, CALB, and various other brands they have heard of. It’s just not a well-known brand,

In the past was a bad thing, But with this type of new technology, sometimes it’s a great thing to get in early while you can.

Lithium Battery-school
Pylontech First Gen 8 years old – Lifepo4 with bad cells – Repaired

Model – Extra 2000 – First generation Pylontech Lifepo4 Battery

Thanks to Nicolas for making this video of his First generation Lifepo4 Battery repair.

Here we see an old Pylontech battery with a capacity of only 10% original capacity, and over the course of 2 youtube videos, Nicolas is able to cut out a couple of bad pouch cells and restore the battery to approx 80% again.
Well done Nicholas


Nicholas Howell
Youtube subs – 1.61K subscribers

Part 1

Part 2

News
Seplos Battery Australia

Seplos is a battery factory in China, alot like many other Alibaba sellers, they put together batteries. They sell a number of Batteries along with some DIY kits to make your life a little easier. The truth is, that although these KITS are easier, they work out a lot more expensive than if you just purchase the cells and the BMS and case yourself. They use B-grade cells, and you can find that information on some Youtube channels.

Should you want to choose Seplos, reach out to me and I can source anything you require. But my recommendation is to not choose Seplos for your next DIY project, as they are expensive for what you get, should you want to do DIY we can get everything you require for better pricing and we can guarantee the quality of the cells and other aspects of your build. We highly recommend not building anything larger than 48v 100ah banks as they get too heavy to be moved. That’s why every company has settled on such a size of 5kwh.

Some examples of their products are

  1. Seplos mason 206 51.2v 16s 206ah 10.5kwh solar energy storage lifepo4 battery pack
  2. PUSUNG-R 48V 100Ah residential solar power energy home battery storage system
  3. PUSUNG-S Stackable Household Lithium 48v 100ah lifepo4 10KWh
  4. MASON 51.2V 135Ah LiFePO4 Battery

And of course, we can help you to get this product. But even the BMS is cheaper than they are asking from the actual manufacturer, not through Seplos.

Seplos rose to fame because of the BMS, and its support for some Inverters on the DIYSOLARFORUM. However alot of time has now passed and almost all decent BMS can communicate with most inverters

pt94755980 seplos mason 206 51 2v 16s 206ah 10 5kwh solar energy storage lifepo4 battery pack

X

We have recently changed our naming of the cell grades. Due to misrepresenatation within the industry.

X

Please enter your email address to receive your cart as a PDF.

Enquiry Cart
Enquiry Cart ×
Loading....