News Blog
Large Lithium Battery cell sizes potentially coming in 2025

Based on the report from Intersolar Europe 2024, here are the energy storage cells announced to be coming in the near future.

  1. 300Ah+ Cells:
    • Various manufacturers are focusing on 300Ah+ cells, including capacities like 305Ah, 306Ah, 314Ah, 315Ah, 320Ah, 345Ah, and 350Ah.
    • Prominent manufacturers like EVE Energy, REPT and Hithium displayed 306Ah and 314Ah cells, with many already certified for non-China markets.
  2. 500Ah+ Cells:
    • Most major LFP manufacturers have exhibited large-capacity cells, with capacities ranging from 580Ah-1130ah respectively.
    • These 500Ah+ cells are expected to enter non-China markets by the first half of 2025.
  3. 1100ah Mega Cells – Hithium 1130ah, more to follow
  4. 5 MWh- 7MWh+ Energy Storage Systems (BESS): 20FT Containers
  5. Companies like CATL and BYD are developing 5, 6 and 7 MWh+ energy storage containers and systems, with 5 MWh+ systems likely to expand into non-China markets in 2025.

These cells and systems showcase the trend towards higher capacity and energy-efficient solutions in the energy storage industry. The article emphasizes the growth of larger-capacity cells (300Ah+ and 500Ah+), which will play a significant role in upcoming storage solutions across the globe.

500AH+ Cells being manufactured in the near future

Company Name
References
Capacity (Ah)
Weight Energy Density (Wh/hg)
Volume Energy Density (Wh/L)
Claimed
Cycle Life (Times)
Dimensions (mm)
HiTHIUM
1130
180+
400
15,000
(25Years)
75x580x208
SVOLT
730
185
420
11,000+
52x500x215
NARADA
690
/
380-440
15,000
TBC
ETC
630
185
390
10,000+
TBC
REPT
625
12000
(25Years)
REPT
587
12000
(25Years)
EVE
628
185+
/
12,000+
(20Years)
71x352x207
CATL
TBC
587 (TBC)
185+
430
18000
(25-30Years)
TBC
VISION
580
/
/
/
352x71x205
CORNEX
625
185+
430+
18000
(25-30Years)
SUNWODA
625AH
625AH
430+
15000 (25Years)

All of these cells Lifespans are claimed in laboratory, and Container level, thermally managed installations.
The core temperatures are maintained at 25°C ± 2°C

The Growing Importance of Energy Storage

In the next 30 years, the energy storage industry is expected to experience explosive growth. Industry leaders predict that in 2024 alone, new energy storage capacities will exceed 180GWh. However, with this growth comes increased competition and industry consolidation, as companies with advanced technologies, robust supply chains, and strong brands are better positioned to thrive.

For REPT, which was the first to mass-produce 320Ah energy storage cells in 2023, maintaining technological leadership is key. The release of its new 587Ah and 625Ah cells marks the next step in its efforts to stay ahead in the competitive market.

As all of these manufacturers jostle, they must strive for longer lifespans, better energy efficiency and lighter batteries. All of these factors are important to the future of the World and its Energy needs as it moves away from fossil fuel and into the renewables age.

CATL
In December of last year, CATL began constructing a new production line for its 530Ah energy storage cells. According to industry experts, while the length of these 530Ah cells is extended, their width and thickness remain unchanged, enabling the reuse of the 280Ah production line equipment. The L-series battery cells in CATL’s Tianhang energy storage system boast an energy density of 430Wh/L, with single-cell capacities estimated to be at least 587Ah based on current data.

NARADA
On April 11, NARADA introduced a 690Ah high-capacity energy storage battery with an impressive lifespan of 20 years. Its volume energy density ranges from 380-440Wh/L, with a cycle life reaching up to 15,000 cycles. Each battery delivers more than 2kWh of energy, operating with over 96% efficiency. This battery is compatible with capacities ranging from 650Ah to 750Ah. A 20-foot energy storage system outfitted with this battery can achieve a capacity of 6MWh.

VISION
In May 2023, VISION launched its 580Ah energy storage battery, offering 1.856kWh of energy per cell with a weight of 11kg and a cycle life of 10,000 cycles. The company is planning to establish a 5GWh production base for these cells in Hubei.

ETC
Targeting the long-duration energy storage market (4-8 hours), ETC has developed a 630Ah energy storage battery capable of storing 2016Wh of energy per cell. These batteries offer a cycle life of over 10,000 cycles and an energy efficiency of more than 96%.

EVE
EVE became the first company in China to release 500+Ah battery cells back in October 2022 with its 560Ah LF560K energy storage battery. In August 2023, they introduced a new large laminated smart cell, the LF560K “Mr. Big,” with a capacity of 628Ah, delivering 2.009kWh per cell and a cycle life of 12,000 cycles. Earlier this year, the company announced its 628Ah “Mr. Big” technical route and the 5MWh “Mr. Giant” energy storage system. Production of the LF560K is planned at EVE’s Jingmen base, with an expected capacity of 60GWh. The first phase of the factory is anticipated to be operational by Q2, with full production starting by the end of the year.

TrinaStorage
TrinaStorage recently revealed the successful development of its 500Ah+ high-capacity batteries. According to the company’s director, the 500Ah+ battery represents a major innovation, striking a balance between performance and cost. This design, based on accumulated years of research in battery electrochemistry, optimizes the volume-specific energy density of the standard 20-foot battery compartment, resulting in a well-balanced solution.

HiTHIUM
HiTHIUM set a new industry benchmark with the world’s first long-term energy storage battery featuring a 1130Ah MIC capacity. This battery maintains over 60% SOH (State of Health), ensuring the energy storage system’s service life extends beyond 20 years.

SVOLT
SVOLT has released a 710Ah fly-stack short knife energy storage cell alongside a 660Ah long-life system cell. Recently, the company launched a 730Ah large-capacity short-knife battery, built upon the foundation of its L500-350Ah energy storage cell. This battery offers an energy density of 420Wh/L and a cycle life exceeding 11,000 cycles.

SUNWODA
SUNWODA has announced plans to release a 600+Ah battery program aimed at improving cell integration. This initiative will reduce PACK components by 40%, reinforce the cell structure, and make PACK platforms more adaptable and easier to modify.

News Blog Home
New LiFePo4 Prismatic Cells sizes 306ah 314ah 320ah and more in 2024

Breaking this is likely the most important news to hit the DIY Solar and Lithium Lifepo4 Battery Off Grid community in 10 years. This really is going to upset the YouTube community apple cart. Especially that guy that lives in Australia who isn’t even Australian.

Currently, 280Ah and 300ah cells are the mainstream in Lifepo4 Batteries, but with the acceleration of technological iteration, the improvement to battery cathode and electrolyte technology in the past few years, over 20 types of high-capacity cells above 300Ah have emerged, these cells will take considerable time to enter the retail and B grade markets, but they are coming in 2024 and 2025. Some of these cells can be purchased now in very large quantity, but for the average joe, building batteries at home DIY style the best mix of value and performance still likes in the 280ah capacity cells over the next few months.

Super Large Capacity LiFePO4 Cells

With the rapid development of the energy storage industry, the market demand for cells continues to outpace supply. Many companies are increasing cell capacity through technological iteration. Cell capacity is growing larger, from 306ah to 314Ah, 320Ah, 340ah and 360ah and then to 500ah 560Ah and 580ah cells

EVE LF560K (628Ah) LiFePO4 Cells

Last year, EVE Energy launched the LF560K battery, adopting cutting-edge Cell to TWh (CTT) technology tailored for TWh-scale energy storage applications. This enables extremely streamlined system integration and dual reduction in costs at both the cell and system levels. Global delivery is expected to commence in Q2 2024.

Keep in mind the DIY community won’t likely see these cells until at least 2025.

EVE LF560K (628Ah) LiFePO4 Cells
EVE LF560K (628Ah) LiFePO4 Cells

Compared to the LF280K battery, the LF560K battery can reduce components like busbars by almost half, whilst improving production efficiency by 30%. Container energy density can be increased by 6.5% allowing for lower costs for customers.

EVE LF560K 628Ah LiFePO4 Cells Data infomation 1

To address the key technological challenges facing the manufacture of ultra-large battery cells, EVE Energy has adopted a “stacking technique” to resolve issues with current collection and manufacturability in the LF560K battery’s electrode and current conductor design. Because the number of tabs per winding is doubled, solving the current collection problem and reducing DC IR by 8%. Prismatic sheet stacking replaces winding, doubling the single electrode sheet length, yields a 3% increase in total cell production .

EVE LF560K 628Ah LiFePO4 Cells Data infomation 2

The LF560K battery represents EVE Energy’s relentless pursuit of innovation and quality, built upon over 21 years of extensive experience in the battery industry and the strong R&D capabilities of its 3,100-member research team.

Currently, the mainstream energy storage cells on the market are 280Ah rectangular aluminum-cased cells. Many manufacturers are also reducing costs for downstream customers by improving cell volumetric density – that is, increasing capacity density per unit volume.

The 560Ah cell essentially doubles the common 280Ah rectangular cell size, equivalent to placing two 280Ah cells side-by-side. This aims to reduce PACK components and achieve cost reduction.

Although the 560Ah cell is not yet EVE Energy’s primary product, it has embarked on the path to commercialization. On February 1 this year, EVE Energy broke ground on its new “60 GWh Power Energy Storage Battery Super Factory” in Jingmen, Hubei, with 10.8 billion RMB investment. This factory will mass-produce the 560Ah energy storage cell. The 560Ah cell is expected to commence global delivery in Q2 2024.

Vision 580Ah LiFePOP4 Cell

On May 16, China’s largest battery exhibition, CIBF 2023, opened in Shenzhen. Thunder Corporation prominently displayed an ultra-high capacity cell.

The 580Ah ultra-large single-cell released by Thunder Corp is the largest capacity single-cell emerged so far globally.

Although the exhibit at CIBF appeared high-profile, it only showcased partial specs. The company claims 10,000 cycle life, 11kg weight per cell, 1856Wh nominal capacity, and 0.5C charge/discharge rate. But details such as packaging technology, mass production timeline, and delivery schedule remain unclear.

With over 10,000 cycle life, the 580Ah cell represents a two-pronged upgrade at both the cell and system levels, providing customers robust safety assurance and performance guarantee. Technologies such as low-expansion anode materials, full tab design, electrode surface treatment, and flexible electrode forming help resolve liquid infiltration challenges for large cells, enabling comprehensive safety protection and high cycle life through heat insulation, diffusion prevention, pressure relief, and more. This will better meet application requirements for grid-scale energy storage, greatly improving system safety, lifespan, and lowering life-cycle electricity costs.

Vision 580Ah LiFePOP4 Cell
Vision 580Ah LiFePOP4 Cell

Currently, there is no universally accepted single-model standard for energy storage cells, and the industry has not yet formed complete standardization. It is believed that with continuous technological breakthroughs and improved designs, more energy storage cell solutions will emerge over time.

Enterprises should pursue R&D across diverse cell models, material systems, and cost schemes. With market validation over time, superior cell designs will become proven, catalyzing new breakthroughs in energy storage cells. This is a crucial premise for the healthy development of the energy storage industry.

CATL 306Ah/314Ah LiFePO4 Cell

CATL New 306Ah 285Ah 280Ah LiFePO4 Cells 1024x768 1

CATL said that the mass production and delivery of 314Ah dedicated electric core for energy storage is another opportunity for the company to lead the development of energy storage system through technological innovation and bring new breakthroughs in the field of energy storage.

CATL 306Ah 285Ah 280Ah LiFePO4 Cells

It is understood that CATL EnerD series products use its energy storage dedicated 314Ah core, and equipped with CTP liquid cooling 3.0 high-efficiency grouping technology, optimizing the grouping structure and conductive connection structure of the core, while adopting a more modular and standardized design in the process of design and manufacturing, to achieve the 20-foot single compartment of the power from 3.354MWh to 5.0MWh, compared with the previous generation of products. Compared to its predecessor, the new EnerD series of liquid-cooled prefabricated energy storage pods saves more than 20% of floor space, reduces the amount of construction work by 15%, and decreases commissioning, operation and maintenance costs by 10%, and also significantly improves energy density and performance.

CALB 305Ah/314Ah LiFePO4 Cells

CALB 305Ah 314Ah LiFePO4 Cells 1024x630 1
CALB 305Ah & 314Ah LiFePO4 Cells
CALB 314Ah LiFePO4 Cell Data Infomation
CALB 314Ah LiFePO4 Cell Data & Infomation

SVOLT 325Ah LiFePO4 Blade Cell

SVOLT 325Ah LiFePO4 Blade Cell
SVOLT 325Ah LiFePO4 Blade Cell

GOTION 300Ah/340Ah LiFePO4 Cell

GOTION 340Ah LiFePO4 Prismatic Battery Cells 1
GOTION 340Ah LiFePO4 Prismatic Battery Cells

REPT 320Ah/340Ah LiFePO4 Cells

REPT 320Ah 340Ah LiFePO4 Cells
REPT 320Ah & 340Ah LiFePO4 Cells

BATTERO TECH 314Ah LiFePO4 Cell

兰钧 BATTERO TECH 314Ah LiFePO4 Cell
BATTERO TECH 314Ah LiFePO4 Cell

Great Power 320Ah LiFePO4 Cell

Great Power 320Ah 280Ah 220Ah 150Ah LiFePO4 Cells

Higee 314Ah/375Ah LiFePO4 Cell

Higee 375Ah LiFePO4 Cell
Higee 375Ah LiFePO4 Cell

ETC 314Ah LiFePO4 Cell

ETC 314Ah LiFePO4 Cell
ETC 314Ah LiFePO4 Cell

HTHIUM 300Ah/314Ah LiFePO4 Cells

海辰 HTHIUM 300Ah LiFePO4 Cell
HTHIUM 300Ah LiFePO4 Cell
海辰 HTHIUM 314Ah LiFePO4 Cell
HTHIUM 314Ah LiFePO4 Cell

Cornex 306Ah/314Ah/320Ah LiFePO4 Cells

楚能 Cornex 314Ah LiFePO4 Cell
Cornex 314Ah LiFePO4 Cell
楚能 Cornex 306Ah LiFePO4 Cell
Cornex 306Ah LiFePO4 Cell

Narada 305Ah LiFePO4 Cell

Narada 305Ah LiFePO4 Cell
Narada 305Ah LiFePO4 Cell

TrinaStorage 306Ah/314Ah LiFePo4 Cells

天合储能 TrinaStorage 314Ah LiFePO4 Cells
TrinaStorage 314Ah LiFePO4 Cells

SUNWODA 314Ah LiFePO4 Cell

SUNWODA 314Ah LiFePO4 Cell
SUNWODA 314Ah LiFePO4 Cell
SUNWODA 314Ah LiFePO4 Cell Data infomation
SUNWODA 314Ah LiFePO4 Cell Data infomation 2
SUNWODA 314Ah LiFePO4 Cell Data & infomation

JEVE 305Ah/360Ah LiFePO4 Cells

JEVE 305Ah 360Ah LiFePO4 Cell
JEVE 305Ah & 360Ah LiFePO4 Cell

COSPOWERS 305Ah LiFePO4 Cell

昆宇电源 COSPOWERS 305Ah LiFePO4 Cell
COSPOWERS 305Ah LiFePO4 Cell

shoto 315Ah LiFePO4 Cell

双登集团 shoto 315Ah LiFePO4 Cell
Shoto 315Ah LiFePO4 Cell

ZENERGY 314Ah LiFePO4 Cell

正力新能 ZENERGY 314Ah LiFePO4 Cell
ZENERGY 314Ah LiFePO4 Cell

Seeking the “Triangle Balance Point”

At the 320Ah capacity level, internal cell temperatures can surpass 800°C, exceeding the decomposition temperature of lithium iron phosphate and posing challenges to cell safety, energy density, manufacturing processes, and more.

Cell R&D also faces the classic ‘impossible trinity’ of high energy density, long cycle life, and high safety. Energy density is a priority consideration in nearly all cell design. Pursuing higher energy density requires thinner membranes and high pressure and areal density electrode materials. On one hand, such extremities make liquid infiltration more difficult, undermining cycling performance. On the other hand, thinner membranes and higher energy density materials also mean poorer safety. There is no avoiding the trade-off between energy density and performance. Prioritizing energy density may jeopardize cycle life and safety. Whereas uncompromising cycle life and safety comes at the cost of lower energy density and weaker competitiveness. Most companies aim for a balanced sweet spot.

Cell manufacturers often tout cycle life figures of 6,000, 8,000, 10,000 even 18,000 based on specific controlled test conditions and model extrapolation. But actual cycle life is lower when cells are packaged into battery packs and deployed in energy storage systems. We expect a lifespan of about 3-18 years depending on the Depth of discharge, C rate, thermal and Battery Management put into place by each individual builder. That is a significant difference, because batteries are not invincible, but LiFePo4 is really versatile.

The 280Ah cells released in 2020 were produced by less than three manufacturers in 2021. Becoming mainstream in energy storage power stations in 2022, failure rate issues can be expected to surge around 2025 after initial installations complete their lifespan. Time will tell.

Safety Depends on Multiple Factors

Larger cells are a double-edged sword – cost reduction and accelerated market growth come with technical challenges and safety concerns. At the system level, safety depends on factors including cell design, thermal propagation isolation, early warning systems, fire prevention systems, and more.

Looking narrowly at the cell perspective, rising manufacturing automation enables producers to strengthen quality control capabilities. Meanwhile, breakthroughs in automated inspection equipment and methodologies screen cell safety before leaving factories.

Advancements in materials such as more thermally/chemically stable membrane systems and additives will also continuously improve battery safety and stability. But from an electrochemical standpoint, absolute safety remains elusive for lithium-ion batteries given inherent risks requiring mitigation through system design, monitoring, emergency response, and other management strategies. Therefore, a systematic approach will define future safety design.

X

Please enter your email address to receive your cart as a PDF.

Enquiry Cart
Enquiry Cart ×
Loading....